

[Maximum mark: 7]

The first three terms of a geometric sequence are $\,u_1^{}\!=0.64$, $\,u_2^{}\!=1.6$, and $\,u_3^{}\!=4$.

- (a) Find the value of r. [2]
- (b) Find the value of S_6 . [2]
- (c) Find the least value of n such that $S_n > 75\,000$. [3]

[Maximum mark: 5]

The first three terms of an infinite geometric sequence are 32, 16 and 8.

(a) Write down the value of r. [1 mark]

(b) Find u_6 . [2 marks]

(c) Find the sum to infinity of this sequence. [2 marks]

[Maximum mark: 6]

Three consecutive terms of a geometric sequence are x-3, 6 and x+2. Find the possible values of x.

[Maximum mark: 6]

In a geometric sequence, the fourth term is 8 times the first term. The sum of the first 10 terms is 2557.5. Find the 10th term of this sequence.

[Maximum mark: 16]

The first three terms of a infinite geometric sequence are m-1, 6, m+4, where $m \in \mathbb{Z}$.

- (a) (i) Write down an expression for the common ratio, r.
 - (ii) Hence, show that m satisfies the equation $m^2 + 3m 40 = 0$. [4]
- (b) (i) Find the two possible values of m.
 - (ii) Find the possible values of r.[6]
- (c) The sequence has a finite sum.
 - State which value of r leads to this sum and justify your answer.
 - (ii) Calculate the sum of the sequence. [6]

[Maximum mark: 14]

- (a) Consider an infinite geometric sequence with $u_1 = 40$ and $r = \frac{1}{2}$.
 - Find u₄.
 - (ii) Find the sum of the infinite sequence.

[4 marks]

Consider an arithmetic sequence with n terms, with first term (-36) and eighth term (-8).

- (b) (i) Find the common difference.
 - (ii) Show that $S_n = 2n^2 38n$.

[5 marks]

(c) The sum of the infinite geometric sequence is equal to twice the sum of the arithmetic sequence. Find n.

[5 marks]

[Maximum mark: 6]

The sum of the first three terms of a geometric sequence is 62.755, and the sum of the infinite sequence is 440. Find the common ratio.

[Maximum mark: 14]

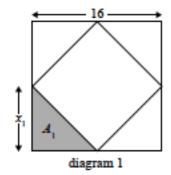
The first two terms of a geometric sequence u_n are $u_1 = 4$ and $u_2 = 4.2$.

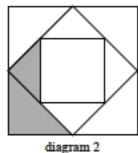
- (a) (i) Find the common ratio.
 - (ii) Hence or otherwise, find u₅.

[5]

Another sequence v_n is defined by $v_n = an^k$, where $a, k \in \mathbb{R}$, and $n \in \mathbb{Z}^+$, such that $v_1 = 0.05$ and $v_2 = 0.25$.

- (b) (i) Find the value of a.
 - (ii) Find the value of k.


[5]


(c) Find the smallest value of n for which v_n > u_n.


[4]

[Maximum mark: 15]

The sides of a square are 16cm in length. The midpoints of the sides of this square are joined to form a new square and four triangles (diagram 1). The process is repeated twice, as shown in diagrams 2 and 3.

am 2 diagram 3

Let X_n denote the length of one of the equal sides of each new triangle. Let A_n denote the area of each new triangle.

(a) The following table gives the values of x_n and A_n, for 1≤n≤3. Copy and complete the table. (Do not write on this page.) [4]

n	1	2	3
X _n	8		4
A_n	32	16	

- (b) The process described above is repeated. Find A₆.
- (c) Consider an initial square of side length kcm. The process described above is repeated indefinitely. The total area of the shaded regions is kcm². Find the value of k.

[7]

www.eduib.com

Homepage Lesson EdulB Academy Membership

My Account

Study with the best and expect best in IB.

Best online IB knowledge repository which is prepared by best IB Tutors. IB Question Bank for IB Students and IB Teachers.

