TOPIC III

FULL NOTES ⇒ **CIRCULAR**

FUNCTIONS & TRIGONOMETRY

3.1 - CIRCLE BASICS

→ FUNCTION ⇒ Alternative way of measuring degrees.

$$\pi$$
 radians = 180° [2 π = 360°, π /2 = 90°]

→ OTHER RULES ⇒

3.2 - UNIT CIRCLE

- → UNIT CIRCLE ⇒ Defined as a circle with its center at the origin and with a radius of 1.
- → REALITIONSHIP WITH SIN / COS ⇒ Looking at the diagram below, we can analyse the right angled triangle created by the point P(a, b).

Using SOHCAHOA :
$$sin\theta = \frac{O}{H} = \frac{b}{1}$$

$$\cos\theta = \frac{A}{H} = \frac{q}{1}$$

SO:
$$a = \cos\theta$$

 $b = \sin\theta$ or $P(a, b) \Rightarrow P(\cos\theta, \sin\theta)$

→ SPECIFIC VALVES ⇒ By learning the coordinates on the unit circle at given angles, you can learn important valves of sinθ and cosθ

The diagram to the right shows specific valves with multiples of $\pi/4$ & $\pi/6$

As a full circle is 2π , these valves repeat evr 2π

3.3 INDENTTITIES

→ TRIGONOMETRIC

 ${f IDENTITY} \Rightarrow {f Looking}$ back to the trianle in the unit circle :

$$\tan\theta = \frac{\text{opp}}{\text{adj}} \Rightarrow \tan\theta = \frac{\sin\theta}{\cos\theta}$$

EG - 1
$$\Rightarrow$$
 Calculate $\frac{\sin \pi}{\cos \pi}$: $\frac{\sin \pi}{\cos \pi} = \tan \pi = 0$

EG - 2 ⇒ Simplify 3sinx + 2cosx.tanx :

$$3\sin x + 2\cos x \left(\frac{\sin x}{\cos x}\right) = 3\sin x + 2\sin x = 5\sin x$$

→ PYTHAGDREAN

IDENTITY \Rightarrow Using the pythagorean theorem on triangle from the unit circle, we get.

$$a^2 + b^2 = 1^2 \implies \cos^2\theta + \sin^2\theta = 1$$

EG - 1 \Rightarrow Simplify $\cos^2\theta \sin^2\theta + \sin^3\theta$:

As $\cos^2\theta \sin\theta + \sin^3\theta = \sin (\cos^2\theta + \sin^2\theta)$

We get
$$\sin\theta(1) = \sin\theta$$

EG - 2
$$\Rightarrow$$
 Simplify $3\sin^2\theta + 3\cos^2\theta : 3(\sin^2\theta + \cos^2\theta) = 3(1) = 3$

→ DOUBLE ANGLE

FORMLULAE \Rightarrow We also have formulae for $\sin 2\theta$ & $\cos 2\theta$:

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$OR = 1 - \sin^2\theta$$

$$OR = 2\cos^2\theta - 1$$

EG - 1
$$\Rightarrow$$
 If $\sin\theta = \frac{4}{5} \& \cos\theta = \frac{3}{5}$

a) FIND
$$\sin 2\theta : \sin 2\theta = 2\sin\theta \cos\theta$$

$$= 2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right) = \frac{24}{5}$$

b) FIND
$$\cos 2\theta : \cos 2\theta = 1 - 2\sin^2\theta$$

$$= 1 - 2\left(\frac{4}{5}\right)^2 = 1 - \frac{32}{25} = -\frac{7}{5}$$

3.4 TRIG FUNCTION FEATURES

ightharpoonup TERMINOLOGY \Rightarrow

→ SINE CURVE ⇒

ightharpoonup COSINE CURVE \Rightarrow

\rightarrow TAN \Rightarrow

→ TRANSFORMATIONS ⇒

(Same for cosine)
$$y = a \sin(b (x - c)) + d$$

- \Rightarrow Principal axis at y = d \Rightarrow Period is $\frac{2\pi}{b}$ \Rightarrow Principal axis at y = d \Rightarrow Period is $\frac{\pi}{b}$

- $y = a \tan(b (x c)) + d$
- \Rightarrow Amplitude is |a| \Rightarrow Horiz. \Rightarrow Amplitude undefined \Rightarrow Horiz. translation by c

3.5 SOLVING TRIG EQUATION

→ METHOD 1 ⇒ Using Graps

E.G - 1
$$\Rightarrow$$
 Solve sin (2x) = 0.7 for $0 \le x \le 2$:

Use graph we see

 $x \approx 0.4 \& 1.2$

translation by c

→ METHOD 2 ⇒ Using tecnology

E.G - 2
$$\Rightarrow$$
 Solve sin (2x) = 0.7

for $0 \le x \le 2$:

There are a couple of ways with GDC:

- Enter in 2 lines $Y_1 = \sin 2x \& Y_2 = 0.7$
 - \rightarrow Find intersection x = 0.3877 & 1.1731
- Rearrange to get $x = \frac{\sin^{-1}(0,7)}{2}$ and use GDC to calculate this valve.

→ METHOD 3 ⇒ Using algebraic methods

E.G - 3
$$\Rightarrow$$
 Solve sin $(2x) = -\frac{1}{2}$
for $0 \le x \le 2\pi$:

We will need to observe the unit circle for when the y - coordinate is -1/2.

We must make on adjustment as we are looking 2x. so the range of angles doubles, to o 4π . From the unit circle,

 $\sin\theta = -\frac{1}{2}$ at $\frac{7\pi}{6}$, $\frac{11\pi}{6}$, $\frac{19\pi}{6}$, $\frac{23\pi}{6}$. We must halve these to reach our answers for

$$x: \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}$$

3.6 TRIANGLE TRIG

→ FOR TRIANGLES ⇒

AREA RULE:

Area =
$$\frac{1}{2}$$
 absinC

SINE RULE:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

COSINE RULE:
$$a^2 = b^2 + c^2 - 2bc(\cos A)$$

OR
$$CosA = \frac{b^2 + c^2 - a^2}{2bc}$$