FULL NOTES - CALCULUS

6.1. LIMITS / DERIVATIVES

→ LIMITS 🗢 : As a sepuance continues forever, what point does it tend towards. This point is the limit.

E.G.: The limit of 0.3, 0,33, 0,333, is 0,3 or 1/3 (It 'tend' to 1/3)

$$\lim_{x \to \infty} \left(\frac{2x+3}{x-1} \right) \quad \text{is the, as you plug in } x = 1,2,3,... \text{ and get the sequence } : \frac{5}{0}, \frac{7}{1}, \frac{9}{2}, \dots$$
 It tends to 2.

⇒ : This brings us to the main point, which invelves the limit of a sequence of gradients of lines. Explained below.

- * So finding this limit is equivalent to finding the gradient of the tangent.
- * We call this : finding the derivative / $f'(x) / d_v/d_x$ / differentiating

E.G.: Find the derivative of $f(x) = x^2$

$$\lim_{h \to \infty} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to \infty} \frac{x^2 + 2xh + h^2 - x^2}{h} = \dots$$

$$= \lim_{h \to \infty} \frac{2xh + h^2}{h} = \lim_{h \to \infty} 2x + h = 2x$$
This means : if you take a point on f(x) = x², the gradient of the tangent at that point will be equal to 2x

6.1. LIMITS / DERIVATIVES

- → LIMITS 🗢 : As a sepuance continues forever, what point does it tend towards. This point is the limit.
 - E.G.: The limit of 0.3 , 0,33 , 0,333, is 0,3 or 1/3 (It 'tend' to 1/3)

$$\lim_{x \to \infty} \left(\frac{2x+3}{x-1} \right) \quad \text{is the, as you plug in } x = 1,2,3,... \text{ and get the sequence } : \frac{5}{0}, \frac{7}{1}, \frac{9}{2}, \dots \text{ It tends to } 2.$$

 ⇒ : This brings us to the main point, which invelves the limit of a sequence of gradients of lines. Explained below.

6.2. DERIVATIVE RULES

- **REMEMBER** ⇒ : We will represent the derivature in 2 different ways.
 - 1. Derivative of $f(x) \Rightarrow f'(x)$
 - 2. Derivative of $y = \Rightarrow dy/dx = we will use both$

RULES ⇒

f(x)	f'(x)	
x ⁿ	nx ⁿ⁻¹	
a-x ⁿ	nax ⁿ⁻¹	
sinx	COSX	
COSX	-sinx	
tanx	1/cos ³ x	
ex	ex	
Inx	1/x	

meaning $x^3 \Rightarrow 3x^2$, $x^6 = 6x^5$, etc so $2x^4 \Rightarrow 8x^3$, $-7x^6 \Rightarrow -4x^5$, etc

sinx + cosx ⇒ 3cosx - sinx

4e² - 2lnx ⇒ 4e² - 2/x

NOTE 1 \Rightarrow If f(x) is the sum (or differenence) of multiple component, then you can
differentiate them separately,EG. \Rightarrow 6x² - sinx \Rightarrow 18x² - cosxNOTE 2 \Rightarrow If a tem / component is multilied by a contant, the derivative keeps that
constant, inchaged.EG. \Rightarrow 4sinx \Rightarrow 4cosx, $-9e^x - 9e^2$

FURTHER RULES

REMINDER \Rightarrow : If we have $f(x) = x^2 \ell g(x) = 5x$, then $f(g(x)) = (5x)^2$ is a composite function. Below we learn hov to differentiate them.

CHANIN RULE \Rightarrow d/dx f(g(x)) = f'(g(x)) g'(x)

EG 1. \Rightarrow y = $(3x^2 + 5x + 2)^7 \Rightarrow dy/dx = 7(3x^2 + 5x + 2)^6 (6x + 5)$

EG 2. \Rightarrow f(x) = sin(3x) \Rightarrow f'(x) = cos(3x) +3 = 3cos3x

EG 3. \Rightarrow y = e^{x^{2-3x}} \Rightarrow dy/dx = (2x - 3) e^{x^{2-3x}}

CALCULUS (continued)

We've seen examples of diffrentiating functions that are added together.

$$f(x) = v(x) + v(x) \implies f'(x) = v'(x) + v'(x)$$

However, when v(x) & v(x) are multiplied together, it is not that simple :

PRODUCT RULE \Rightarrow f(x) = u(x) v(x) f'(x) = u'(x) v(x) + u(x) v'(x)

[It is useful to write out u(x), v(x), u'(x) v'(x) clearly before you write an answer]

E.G 1
$$\Rightarrow$$
 f(x) = x²(2x-1) // u(x) = x², v(x) = 2x-1, v'(x) = 2x, v'(x) = 2
f'(x) = 2x(2x - 1) x x²(2) = 4x² - 2x + 2x2 = 6x² - 2x

E.G 2 ⇒
$$f(x) = (3x^4)(\sin x) / / v(x) = 3x^4$$
, $v(x) = \sin x$, $v'(x) = 12x^3$, $v'(x) = \cos x$
 $f'(x) = 12x^3 \sin x + 3x4 \cos x$

Next, we see a rule for when v(x) is divided by v(x):

QUOTIENT RULE \Rightarrow $f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x) v'(x)}{(v(x))^2}$

E.G 1
$$\Rightarrow$$
 $y = \frac{1+3x}{2-x}$ // $u = 1 + 3x$, $v = 2 - x$, $u' = 3$, $v' = -1$
$$\frac{dy}{dx} = \frac{3(2-x) - (1+3x)(-1)}{(2-x)^2} = \frac{6-3x+1+3x}{(2-x)^2} = \frac{7}{(2-x)^2}$$

E.G 2
$$\Rightarrow$$
 $y = \frac{2\sqrt{x}}{2-x}$ // $v = 2\sqrt{x}$, $v = 1 - x$, $v' = 1/\sqrt{x}$, $v' = -1$
$$\frac{dy}{dx} = \frac{(1-x) - (1/\sqrt{x})(-1)}{(1-x)^2} = \frac{(1-x) + 2x}{\sqrt{x}(1-x)^2} = \frac{1+x}{\sqrt{x}(1-x)^2}$$

There are various uses for finding the 'second derivative' of a function :

SECOND DERIVATIVE ⇔ : We simply diferentiate two times

NATOTION : f''(x) / d^2y / dx^2

E.G. 1 \Rightarrow f(x) = 7x² - x³ f'(x) = 14x - 3x² \Rightarrow f''(x) = 14 - 6x

6.3. VERTICES / OPTIMISATION

TERMONOLOGY ⇒ : Wertices, stationary point, turning points, maxima / minima are coloured red below

FINDING A TURNING POINT ⇒ : As the gradient of the line at the turning point is zero, we can use differentiation to find coordinates :
Solve f'(x) = 0 to find the x - coordinate.

E.G 1 \Rightarrow Find turning point of $f(x) = x^2$ ANS : $f'(x) = 3x^2$. So we must solve $3x^2 = 0$, x = 0. T.P. = (0,0)

E.G 2 ⇒ Find maximum of teh curve $y = 3x^2 = x^2$ ANS : dy/dx = -6x + 12 Solve -6x + 12 = 0, x = 2 $y = 3(2)^2 + 12(2)$. T.P. = (2,12) = -12 + 24 = 12

INCREASINF DECREASING \Rightarrow : Find the values of x for that f'(x) > 0 (positive) to, find where the curve is increasing. f'(x) < 0 for decreasing

> **E.G 1** \Rightarrow For what x values is $f'(x) > 2x^2 - 8$ increasing? ANS : f'(x) = 4x. Solve 4x > 0, x > 0

E.G 2 ⇒ For what x values is $y = 1/3 x^3 + 2x^2 - 5x + 6$ decreasing? ANS : dy/dx = $x^2 + 4x - 5$. Solve $x^2 + 4x - 5 < 0$, (x + 5)(x - 1) < 0, -5 < x < 1

MAX	₽	When f''(x) is negative after plugging in the x-coord of the turning point.		Ţ
MIN	₽	When f''(x) is positive fter plugging in the x-coord of the turning point.	1	<u>)</u>
POINT OF	⇔	When $f'(x) = 0$ after the sance process, the point is neit-	•	

INFLECTION her max. or min.

E.G 1 \Rightarrow Find and classfy stationary point of $f(x) = x^4 - 4x^3 + 5$

ANS : $f'(x) = 4x^3 - 12x^2 = 0$, $4x^3 (x - 3) = 0$, so x = 0 or 3 $f''(x) = 12x^2 - 24x$ $f''(0) = 12(0)^2 - 24(0) = 0$ \therefore at x = 0, we have a inflection point $f''(3) = 12(3)^2 - 24(3) = 36$ \therefore at x = 0, we have a minimum (3, -22)

→ INFLECTION POINT ⇒ : There are different from stationary point. They occcur when the rake of change of gradient is zero. In other word : when f''(x) = 0

E.G 1 \Rightarrow Now find & classify inflection points of $f(x) = x^4 - 4x^3 + 5$

ANS : $f''(x) = 12x^3 - 24x$ [from above] $12x^2 - 24x = 0$, 12x(x - 2) = 0, so x = 0 or 2 f''(0) = 0 f(0) = 5 thus (0,5) is a stationary inflection $f'(2) \neq f(2) = -11$, thus (2, -11) is a non stationry infelction :

APPLICATIONS KINEMATICS

E.G. : S(t) = t² + 2t - 3 cm

 VELOCITY ⇒ : Formal terminology for what you would call speed. Impertantly, it is iqual to the rate of change of displacement.
 E.G. : S(t) = t² + 2t - 3, then velocity [v, (t)] = s'(t) = 2t + 2 cm/s
 So the velecity at 4 seconds would be v(4) = 2(4) + 2 = 10 cm/s

ACCELERATION ⇒ : The rate of change of velocity. This means it can be found with the derivative of velocity, or 2nd derivative of displacement.

E.G. : If v(t) = 2t + 2, then $a(t) = v'(t) = 2 \text{ cm/s}^2$

* 'Speed' is the absolute valve of 'velocity'. [velocity can be negative]

EXAMPLES : Choosing the lengths of the sides of a box that maximises the volume. * Finding which quantity of sales optimises profit

- E.G 1 ⇒ A rectangular dish is made by cutting the corners out of a 25x40 cm piece of tin, then folding up te metal. Which size of comer maximises volume?
 - ANS : Find a function of x for volume :

$$\Rightarrow V(x) = x(40 - 2x)(25 - 2x) = x (1000 - 80x - 50x + 4x^{2})$$

$$= 1000x - 130x^2 + 4x^3$$
 cm³

- \Rightarrow Need to V'(x) = 0 to find maximum
- $\Rightarrow V'(x) = 1000 260x + 12x^2 = 0 + 4 , 250 65x + 3x^2 = 0$ (3x 50)(x 5) = 0 , x = 5 or 50/3
- ⇒ Check if V"(5) or V"(50/3) is negative to find maximum

Cut 5 cm squares out of the corner to masimise volume

6.4.INTEGRATION

INTEGRATION ⇒ : is essentially the pposite of differentiation

 \Rightarrow As we say that $4x^3$ is the dirivative of $x^4,$ we can then say that x^4 is the

'integral' or 'antiderivative' of 4x³

NOTATION \Rightarrow : The integral of f(x) i written $\int f(x) d.x$

AREA

$$\int f(x) dx = \int f(x) dx = \int f(x) dx$$

 $\stackrel{{\textstyle \ }}{\longrightarrow} \ \ {\rm SPECIFIC} \ {\rm CASES} \ {\rm e}{\rm >}:$

 $a \int b cf(x) dx = c_a \int b f(x) dx$

Function	Integral	
k(constant)	kx+c	
x ⁿ	x ⁿ⁺¹ /n+1 +c	
e ^x	e ^x + c	
1/x	ln x + c	
COSX	sinx + c	
sinx	-cosx +	

E.G.1: $\int 5 \, dx = 5x + c$ **E.G.2**: $\int x^6 \, dx = \frac{x^2}{7} + c$ E.G.3: $\int (3x + 2/x)^2 dx$ [No product rule] = $\int (9x^2 + 12 + 4x^{-2}) dx$ [Expand first] = $\int \frac{9x^3}{3} + 12x + \frac{4x^{-1}}{-1} + c = 3x^3 + 12x - 4/x + c$

→ FURTHER CASES ⇔ :	Function	Integral	
	e ^{nx+b}	1/a e ^{nx+b}	
	(ax + b) ⁿ	$\frac{1}{a} \frac{(ax+b)^{n+1}}{n+1} + c$	
	$\frac{1}{ax + b}$	<u>1</u> In ∣ax + b∣ + c	
	cos(ax + b)	$\frac{1}{a}$ sin(ax + b) + c	
	sin(ax + b)	$\frac{-1}{a}\cos(ax+b)+c$	

E.G.1:
$$\frac{1}{2} = \frac{(2x+3)^5}{5} + C = \frac{(2x+3)^5}{5} + C$$

E.G.2:
$$\int \frac{4}{1-2x} dx = 4 \int \frac{14}{1-2x} dx = 4x \left(\frac{1}{2}\right) x \ln |1 - 2x| x c = 2\ln |1 - 2x| + c$$

PARTICULAR VALVES ⇒ : Instead of leaving your answer with a ' + c ' at the end evry time, sometimes you will be given enough information to plug in valves, and solve for c.

E.G.1: Find
$$f(x)$$
 given that $f'(x) = x^3 - 2x^2 + 3$ and $f(0) = 2$

$$\stackrel{\text{L}}{\mapsto} \text{ SOL : } f(x) = \int (x^3 - 2x^2 + 3) \, dx = \frac{x^2}{4} - \frac{2x^2}{3} + 3x + c \\ f(0) = \frac{0}{4} - \frac{0}{3} + 3(0) + c = 2, \ c = 2 \ f(x) = \frac{x^4}{4} - \frac{2x^3}{3} + 3x + 2$$

SUBTITUTION ⇒ : This a method of integrating used when we have an expression

multiplied by its own derivative :

$$\int f(x) \frac{dy}{dx} dx = \int f(x) dx$$

E.G. 1 :
$$\int (x^2 + 3x)^4 (2x + 3) dx$$
 - Notice that 2x + 3 is the derivative of $x^n + 3x$

$$= \int (u)^4 \frac{du}{dx} dx - \text{Substitute } u = x^2 + 3x$$
$$= \int (u)^4 du \frac{u^5}{5} + c - \text{Integrate } w \cdot r \cdot t \cdot u$$
$$= \frac{1}{5} (x^2 + 3x)^5 + c - \text{Substitute back}$$

FINDING AREA (Definite Integrals) ⇒ :

E.G. 1 :
$$_{1}\int^{3} (x^{2} + 2) dx$$

= $\left[\frac{x^{3}}{3} + 2x\right]_{1}^{3} = \left(\frac{27}{3} + 2(3)\right) - \left(\frac{1}{3} + 2(1)\right)$
= $(9 + 6) - \left(\frac{1}{3} + 2\right) = 12\frac{2}{3}$

E.G. 2 :
$$_0 \int^{\pi/3} \sin x \, dx$$

= $[-\cos x]_0^{\pi/3}$ = $(-\cos \pi/3) - (-\cos 0)$
= $1/2 + 1 = 1/2$

6.5. INT. APPLICATIONS

AREA BETWEEN

TWO CURVES \Rightarrow : A natural extension of the method for fuding area under a curve.

So Area $=_{a} \int^{b} f(x) - g(x) dx - {}_{b} \int^{c} f(x) - g(x) dx$

SOLIDS OF REVOLUTION \Rightarrow :

We can use a combination of integration and the formula for volume of a cylinder to find the volume for the solid created by rotating $f(x) 360^{\circ}$ around the x-axis

E.G. 1 : Find the volume of he solid formed when the graph of the function $y = x^2$ for $0 \le x \le 5$ is revoved 2π about the x-axis

Volume =
$$\pi_a \int^b y^2 dx = \pi_0 \int^5 (x^2)^2 dx = \pi_0 \int^5 x^4 dx = \pi \left[\frac{x^5}{5} \right]_0^5$$

= $\pi \left(\frac{3125}{5} - \frac{0}{5} \right) = 625 \pi \text{ units}^3$

6.6. KINEMATICS

NOTE 1 ➡ Much of the kinematics content has already been conveered in 6.3 - APPLICATIONS OF DIFFERENTIATION

Just as we have our basic kinematics differentiation rules :

s(t), v(t) = ds/dt, $a(t) = dv/dt = d^2s / dt^2$

We have the carrecfonding rules for intergration :

s(t), $v(t) = \int a(t) dt$, $s(t) = \int v(t) dt$

From this, we can get a formula for distance travelled :

For a velocity - time function v(t)

Where v(t) = 0 for the intermal $t_1 \le t \le t_2$:

Dist travelled =
$$t_1 \int t_2 v(t) dt$$

By extension, distance travelled is the area under a velecity -time graph

(if velecity stays in the some direction)

E.G. 1 : A particle has velocity function v(t) = 1 . 2t cms⁻¹ as it moves in a straight line. The particle starts 2m to the right of 0.

a) Write a formula for displacement s(t) :

 $\int v(t) dt = (1 - 2t) dt$ $s(t) = (t - t^2 + c) cm$ c = 2, $s(t) = (t - t^2 + 2) cm$

b) Find the total distance travelled in the first second of motion :

After 1/2 sec, velocity becomes negative. So we must suldract the integral from 1/2 to 1 :

Disk travelled =
$$_0 \int_{1/2}^{1/2} v(t) dt - _{1/2} \int_{1/2}^{1} v(t) dt = [t - t^2 + 2]_0^{1/2} - [t - t^2 + 2]_{1/2}^{0}$$

$$= ((1/2 - 1/4 + 2) - (2)) - ((1 - 1 + 2) - (1/2 - 1/4 + 2)) = (1/4) - (-1/4) = 1/2 \text{ cm}$$

c) Find dislacement at the end of one second :

Use displacement = final position - original position

$$= s(1) - s(0)$$

= (1 - 1 + 2) - (0 - 0 + 2) = 0 cm