FULL NOTES - CALCULUS

6.1. LIMITS / DERIVATIVES

LIMITS \Rightarrow : As a sepuance continues forever, what point does it tend towards. This point is the limit.
E.G.: The limit of $0.3,0,33,0,333, \ldots$ is 0,3 or $1 / 3$ (It 'tend' to $1 / 3$)

\Rightarrow : This brings us to the main point, which invelves the limit of a sequence of gradients of lines. Explained below.

* Here, we have a function : $y=f(x)$
* We also have a point $P(x, f(x)) \& Q(x+h, f(x+h))$
* We want to find the gradient of the line PQ.
* So we do $\frac{\text { change in } y}{\text { change in } x}$, which is $\frac{f(x+h)-f(x)}{h}$

* Now, we start looking at a series of points / lines
* That ' h ' valve is getting closer \& closer to zero.
* We're going to look at what the gradients tend to.
* This is written $\lim _{h \rightarrow \infty} \frac{f(x+h)-f(x)}{h}$
* As h gets infinitely close to zero, it approximates the ' tangent '
* So finding this limit is equivalent to finding the gradient of the tangent.
* We call this : finding the derivative $/ f^{\prime}(x) / d_{y} / d_{x} /$ differentiating
E.G.: Find the derivative of $f(x)=x^{2}$

$$
\begin{aligned}
\lim _{h \rightarrow \infty} & \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow \infty} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\ldots \ldots
\end{aligned} \quad \begin{aligned}
\\
=\lim _{h \rightarrow \infty} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow \infty} 2 x+h=2 x \quad \begin{array}{l}
\text { This means : if you take a point on } f(x)=x^{2}, \\
\text { the gradient of the tangent at that point will be } \\
\text { equal to } 2 x
\end{array}
\end{aligned}
$$

6.1. LIMITTS / DERIVATIVES

LIMITS \Rightarrow : As a sepuance continues forever, what point does it tend towards. This point is the limit.
E.G.: The limit of $0.3,0,33,0,333, \ldots$ is 0,3 or $1 / 3$ (It 'tend' to $1 / 3$)

\Rightarrow : This brings us to the main point, which invelves the limit of a sequence of gradients of lines. Explained below.

6.2. DERIVATIVE RULES

REMEMBER \Rightarrow : We will represent the derivature in 2 different ways.

1. Derivative of $f(x) \Rightarrow f^{\prime}(x)$
2. Derivative of $y=\Rightarrow d y / d x=$ we will use both

RULES \Rightarrow

$f(x)$	$f^{\prime}(x)$
x^{n}	$n x^{n-1}$
$a-x^{n}$	$n a x^{n-1}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$1 / \cos ^{3} x$
$e x$	$e x$
$\ln x$	$1 / x$

meaning $x^{3} \Rightarrow 3 x^{2}, x^{6} 6 x^{5}$, etc so $2 x^{4} \Rightarrow 8 x^{3},-7 x^{6} \Rightarrow-4 x^{5}$, etc
$\sin x+\cos x \Rightarrow 3 \cos x-\sin x$
$4 e^{2}-2 \ln x \Rightarrow 4 e^{2}-2 / x$

NOTE $1 \Rightarrow$ If $f(x)$ is the sum (or differenence) of multiple component, then you can differentiate them separately,

```
EG. }=>6\mp@subsup{x}{}{2}-\operatorname{sin}x=>18\mp@subsup{x}{}{2}-\operatorname{cos}
```

NOTE $2 \Rightarrow$ If a tem / component is multilied by a contant, the derivative keeps that constant, inchaged.

```
    EG. }=>4\operatorname{sin}x=>4\operatorname{cos}x,-9\mp@subsup{e}{}{x}-9\mp@subsup{e}{}{2
```


FURTHER RULES

REMINDER \Rightarrow : If we have $f(x)=x^{2} \ell g(x)=5 x$, then $f(g(x))=(5 x) 2$ is a composite function. Below we learn hov to differentiate them.

CHANIN RULE $\Rightarrow d / d x f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$

EG 1. $\Rightarrow y=\left(3 x^{2}+5 x+2\right)^{7} \Rightarrow d y / d x=7\left(3 x^{2}+5 x+2\right)^{6}(6 x+5)$

EG 2. $\Rightarrow f(x)=\sin (3 x) \Rightarrow f^{\prime}(x)=\cos (3 x)+3=3 \cos 3 x$

EG 3. $\Rightarrow y=e^{x^{2-3 x}} \Rightarrow d y / d x=(2 x-3) e^{x^{2-3 x}}$

CALCULUS (continued)

We've seen examples of diffrentiating functions that are added together.

$$
f(x)=v(x)+v(x) \Rightarrow f^{\prime}(x)=v^{\prime}(x)+v^{\prime}(x)
$$

However, when $v(x) \& v(x)$ are multiplied together, it is not that simple :

PRODUCT RULE $\Rightarrow \quad f(x)=u(x) v(x) \quad f^{\prime}(x)=u^{\prime}(x) v(x)+u(x) v^{\prime}(x)$
[It is useful to write out $u(x), v(x), u^{\prime}(x) v^{\prime}(x)$ clearly before you write an answer]
E.G $1 \Rightarrow f(x)=x^{2}(2 x-1) / / u(x)=x^{2}, v(x)=2 x-1, v^{\prime}(x)=2 x, v^{\prime}(x)=2$

$$
f^{\prime}(x)=2 x(2 x-1) x x^{2}(2)=4 x^{2}-2 x+2 x 2=6 x^{2}-2 x
$$

E.G $2 \Rightarrow f(x)=\left(3 x^{4}\right)(\sin x) / / v(x)=3 x^{4}, v(x)=\sin x, v^{\prime}(x)=12 x^{3}, v^{\prime}(x)=\cos x$
$f^{\prime}(x)=12 x^{3} \sin x+3 x 4 \cos x$

Next, we see a rule for when $v(x)$ is divided by $v(x)$:

QUOTIENT RULE \Rightarrow

$$
f(x)=\frac{u(x)}{v(x)} \Rightarrow f^{\prime}(x)=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{(v(x))^{2}}
$$

E.G $1 \Rightarrow y=\frac{1+3 x}{2-x} / / u=1+3 x, v=2-x, u^{\prime}=3, \quad v^{\prime}=-1$

$$
\frac{d y}{d x}=\frac{3(2-x)-(1+3 x)(-1)}{(2-x)^{2}}=\frac{6-3 x+1+3 x}{(2-x)^{2}}=\frac{7}{(2-x)^{2}}
$$

E.G $2 \Rightarrow y=\frac{2 \sqrt{x}}{2-x} / / v=2 \sqrt{x}, v=1-x, v^{\prime}=1 / \sqrt{x}, v^{\prime}=-1$

$$
\frac{d y}{d x}=\frac{(1-x)-(1 / \sqrt{x})(-1)}{(1-x)^{2}}=\frac{(1-x)+2 x}{\sqrt{x}(1-x)^{2}}=\frac{1+x}{\sqrt{x}(1-x)^{2}}
$$

There are various uses for finding the 'second derivative' of a function :

SECOND DERIVATIVE \Rightarrow : We simply diferentiate two times

$$
\text { NATOTION : } f^{\prime \prime}(x) / d^{2} y / d x^{2}
$$

E.G. $1 \Rightarrow f(x)=7 x^{2}-x^{3} f^{\prime}(x)=14 x-3 x^{2} \Rightarrow f^{\prime \prime}(x)=14-6 x$

6.3.VERTICES / OPTIMISATION

TERMONOLOGY \Rightarrow : Wertices, stationary point, turning points, maxima / minima are

 coloured red below

FINDING A TURNING POINT \Rightarrow : As the gradient of the line at the turning point is zero, we can use differentiation to find coordinates:

Solve $f^{\prime}(x)=0$ to find the x-coordinate.
E.G $1 \Rightarrow$ Find turning point of $f(x)=x^{2}$

ANS : $f^{\prime}(x)=3 x^{2}$. So we must solve $3 x^{2}=0, x=0$. T.P. $=(0,0)$
E.G $2 \Rightarrow$ Find maximum of teh curve $y=3 x^{2}=x^{2}$

ANS : $d y / d x=-6 x+12$ Solve $-6 x+12=0, x=2$

$$
\begin{aligned}
y & =3(2)^{2}+12(2) \cdot \text { T.P. }=(2,12) \\
& =-12+24=12
\end{aligned}
$$

INCREASINF DECREASING \Rightarrow : Find the valves of x for that $f^{\prime}(x)>0$ (positive) to, find where the curve is increasing. $f^{\prime}(x)<0$ for decreasing
E.G $1 \Rightarrow$ For what x valves is $\left.f^{\prime}(x)\right) 2 x^{2}-8$ increasing?

ANS : $f^{\prime}(x)=4 x$. Solve $4 x>0, x>0$
E.G $2 \Rightarrow$ For what x valves is $y=1 / 3 x^{3}+2 x^{2}-5 x+6$ decreasing?

ANS : $d y / d x=x^{2}+4 x-5$. Solve $x^{2}+4 x-5<0$,

$$
(x+5)(x-1)<0,-5<x<1
$$

CLASSIFYING POINTS \Rightarrow
 OF INFLECTION

TURNING POINTS

STATIONARY POINTS

STATICONARY NON - STATIONARY INFLECTIONS

INFLECTIONS

6.3.CONT

STATIONARY POINTS \Rightarrow : We knox that we can find these using $f^{\prime}(x)=0$, but we need know what type of [MAX, MIN OR INFLECTION] stationary point it is :
$\mathrm{MAX} \Rightarrow$ When $\mathrm{f}^{\prime \prime}(x)$ is negative after plugging in the x -coord of the -
turning point.

MIN $\Rightarrow \quad$ When $f^{\prime \prime}(x)$ is positive fter plugging in the x-coord of the turning point.

POINT OF $\Rightarrow \quad$ When $f^{\prime \prime}(x)=0$ after the sance process, the point is neitINFLECTION her max. or min.
E.G $1 \Rightarrow$ Find and classfy stationary point of $f(x)=x^{4}-4 x^{3}+5$

$$
\begin{aligned}
\text { ANS : } f^{\prime}(x) & =4 x^{3}-12 x^{2}=0 \quad, 4 x^{3}(x-3)=0 \text {, so } x=0 \text { or } 3 \\
f^{\prime \prime}(x) & =12 x^{2}-24 x \\
f^{\prime \prime}(0) & =12(0)^{2}-24(0)=0 \quad \therefore \text { at } x=0 \text {, we have a inflection point } \\
f^{\prime \prime}(3) & =12(3)^{2}-24(3)=36 \quad \therefore \text { at } x=0 \text {, we have a minimum }(3,-22)
\end{aligned}
$$

INFLECTION POINT \Rightarrow : There are different from stationary point. They occcur when the rake of change of gradient is zero. In other word : when $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$
E.G $1 \Rightarrow$ Now find \& classify inflection points of $f(x)=x^{4}-4 x^{3}+5$

$$
\begin{aligned}
& \text { ANS: } f^{\prime \prime}(x)=12 x^{3}-24 x \quad[f r o m \text { above] } \\
& \\
& 12 x^{2}-24 x=0,12 x(x-2)=0 \text {, so } x=0 \text { or } 2 \\
& \\
& f^{\prime \prime}(0)=0 f(0)=5 \text { thus }(0,5) \text { is a stationary inflection } \\
& \\
& f^{\prime}(2) \neq f(2)=-11 \text {, thus }(2,-11) \text { is a non stationry infelction : }
\end{aligned}
$$

We can represent this whit sign diagrams :

APPLICATIONS KINEMATICS

DISPLACEMENT \Rightarrow : The distance moved away from an origin, 0
Expressed as a function of time.
E.G. : $S(t)=t^{2}+2 t-3 \mathrm{~cm}$

VELOCITY \Rightarrow : Formal terminology for what you would call speed.
Impertantly, it is iqual to the rate of change of displacement.
E.G. : $S(t)=t^{2}+2 t-3$, then velocity $[v,(t)]=s^{\prime}(t)=2 t+2 \mathrm{~cm} / \mathrm{s}$

So the velecity at 4 seconds would be $v(4)=2(4)+2=10 \mathrm{~cm} / \mathrm{s}$

ACCELERATION \Rightarrow : The rate of change of velocity. This means it can be found with the derivative of velocity, or $2^{\text {nd }}$ derivative of displacement.

$$
\text { E.G. : If } v(t)=2 t+2, \text { then } a(t)=v^{\prime}(t)=2 \mathrm{~cm} / \mathrm{s}^{2}
$$

* 'Speed' is the absolute valve of 'velocity'. [velocity can be negative]

OPTIMISATION \Rightarrow : This refers to any real - world problem that uses derivatives to help optimise a variable

EXAMPLES: Choosing the lengths of the sides of a box that maximises the volume.

* Finding which quantity of sales optimises profit
E.G $1 \Rightarrow$ A rectangular dish is made by cutting the corners out of a $25 \times 40 \mathrm{~cm}$ piece of tin, then folding up te metal.
Which size of comer maximises volume?
ANS : Find a function of x for volume :

$$
\begin{aligned}
& \Rightarrow V(x)=x(40-2 x)(25-2 x)=x\left(1000-80 x-50 x+4 x^{2}\right) \\
& \quad=1000 x-130 x^{2}+4 x^{3} \mathrm{~cm}^{3} \\
& \Rightarrow \text { Need to } V^{\prime}(x)=0 \text { to find maximum } \\
& \Rightarrow V^{\prime}(x)=1000-260 x+12 x^{2}=0+4,250-65 x+3 x^{2}=0 \\
& \quad(3 x-50)(x-5)=0, x=5 \text { or } 50 / 3
\end{aligned}
$$

\Rightarrow Check if $\mathrm{V}^{\prime \prime}(5)$ or V " $(50 / 3)$ is negative to find maximum
$\Rightarrow V^{\prime \prime}(x)=24 x-260, V "(5)=24(5)-260=-140$
Cut 5 cm squares out of the corner to maşimise volume

6.4.INTEGRATION

INTEGRATION \Rightarrow : is essentially the pposite of differentiation

[^0]NOTATION \Rightarrow : The integral of $f(x)$ i written $\int f(x) d . x$

$$
\begin{aligned}
& \text { E.G. : } \int 4 x^{3} d x=x^{4}+c \\
& \qquad \begin{array}{l}
\text { We add a potential constant, as these } \\
\\
\\
\text { disappear when differentiating. }
\end{array}
\end{aligned}
$$

AREA UNDER CURVES \Rightarrow : We can use integration to help find the area under a curve (see diagram)
\Rightarrow To find this shaded area, we can use

$$
{ }_{a} \int^{b} f(x) d x=F(b)-F(a)=[F(x)]_{a}^{b}
$$

E.G.1: ${ }_{2} \int^{3} 4 x^{3} d x=F(3)-F(2)=(3)^{4}-(2)^{4}=65$

$$
\hookrightarrow \quad\left(F(x)=x^{4}\right)
$$

\hookrightarrow RULES : $\quad{ }_{a} \int^{b} c d x=c(b-a)$
${ }_{b} \int^{a} f(x) d x={ }_{a} \int^{b} f(x) d x$
${ }_{a} \int^{b} f(x) d x={ }_{b} \int^{c} f(x) d x{ }_{a} \int^{c} f(x) d x \quad \quad{ }_{a} \int^{b} c f(x) d x=c{ }_{a} \int^{b} f(x) d x$
\hookrightarrow SPECIFIC CASES \Rightarrow :

Function	Integral
$k(\operatorname{constant})$	$k x+c$
x^{n}	$x^{n+1 / n+1+c}$
e^{x}	$e^{x}+c$
$1 / x$	$\ln \|x\|+c$
$\cos x$	$\sin x+c$
$\sin x$	$-\cos x+$

E.G. 1 : $\int 5 d x=5 x+c$
E.G.2 : $\int x^{6} d x=\frac{x^{2}}{7}+c$
E.G.3: $\quad \int(3 x+2 / x)^{2} d x \quad$ [No product rule]

$$
\begin{aligned}
& =\int\left(9 x^{2}+12+4 x^{-2}\right) d x \quad[\text { Expand first }] \\
& =\int \frac{9 x^{3}}{3}+12 x+\frac{4 x^{-1}}{-1}+c=3 x 3+12 x-4 / x+c
\end{aligned}
$$

FURTHER CASES \Rightarrow :

Function	Integral
$e^{n x+b}$	$1 / a e^{n x+b}$
$(a x+b)^{n}$	$\frac{1}{a} \frac{(a x+b)^{n+1}}{n+1}+c$
$\frac{1}{a x+b}$	$\frac{1}{a} \ln \|a x+b\|+c$
$\cos (a x+b)$	$\frac{1}{a} \sin (a x+b)+c$
$\sin (a x+b)$	$\frac{-1}{a} \cos (a x+b)+c$

E.G.1: $\frac{1}{2}=\frac{(2 x+3)^{5}}{5}+c=\frac{(2 x+3)^{5}}{5}+c$
E.G. $2: \int \frac{4}{1-2 x} d x=4 \int \frac{14}{1-2 x} d x=4 x\left(\frac{1}{2}\right) x \ln |1-2 x| x c=2 \ln |1-2 x|+c$

PARTICULAR VALVES \Rightarrow : Instead of leaving your answer with a ' $+c$ ' at the end evry time, sometimes you will be given enough information to plug in valves, and solve for c .
E.G.1: Find $f(x)$ given that $f^{\prime}(x)=x^{3}-2 x^{2}+3$ and $f(0)=2$

$$
\begin{aligned}
\hookrightarrow \text { SOL : } f(x) & =\int\left(x^{3}-2 x^{2}+3\right) d x=\frac{x^{2}}{4}-\frac{2 x^{2}}{3}+3 x+c \\
f(0) & =\frac{0}{4}-\frac{0}{3}+3(0)+c=2, c=2 f(x)=\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+3 x+2
\end{aligned}
$$

SUBTITUTION \Rightarrow : This a method of integrating used when we have an expression multiplied by its own derivative :

$$
\int f(x) \frac{d y}{d x} d x=\int f(x) d x
$$

E.G. $1: \int\left(x^{2}+3 x\right)^{4}(2 x+3) d x$ - Notice that $2 x+3$ is the derivative of

$$
x^{n}+3 x
$$

$$
\begin{aligned}
& =\int(u)^{4} \frac{d u}{d x} d x-\text { Substitute } u=x^{2}+3 x \\
& =\int(u)^{4} d u \frac{u^{5}}{5}+c-\text { Integrate w.r.t.u } \\
& =\frac{1}{5}\left(x^{2}+3 x\right)^{5}+c-\text { Substitute back }
\end{aligned}
$$

FINDING AREA (Definite Integrals) \Rightarrow :
E.G. $1:{ }_{1} \int^{3}\left(x^{2}+2\right) d x$

$$
\begin{aligned}
& =\left[\frac{x^{3}}{3}+2 x\right]_{1}^{3}=\left(\frac{27}{3}+2(3)\right)-\left(\frac{1}{3}+2(1)\right) \\
& =(9+6)-\left(\frac{1}{3}+2\right)=12 \frac{2}{3}
\end{aligned}
$$

E.G. $2:{ }_{0} \int^{\pi / 3} \sin x d x$

$$
\begin{aligned}
& =[-\cos x]_{0}^{\pi / 3}=(-\cos \pi / 3)-(-\cos 0) \\
& =1 / 2+1=1 / 2
\end{aligned}
$$

6.5. INT. APPLICATIONS

AREA BETWEEN

TWO CURVES \Rightarrow : A natural extension of the method for fuding area under a curve.

$$
\text { Area } \begin{aligned}
& ={ }_{a} \int^{b} f(x) d x-{ }_{a} \int^{b} g(x) d x \\
& ={ }_{a} \int^{b} f(x)-g(x) d x
\end{aligned}
$$

SPECIAL CASE \Rightarrow : This is not a simple, because $g(x)$ is above $f(x)$ for a section of the area This would give a ' negative ' area

So Area $={ }_{a} \int^{b} f(x)-g(x) d x-{ }_{b} \int^{c} f(x)-g(x) d x$

SOLIDS OF REVOLUTION \Rightarrow :

We can use a combination of integration and the formula for volume of a cylinder to find the volume for the solid created by rotating $f(x) 360^{\circ}$ around the x-axis
E.G. 1 : Find the volume of he solid formed when the graph of the function
$y=x^{2}$ for $0 \leq x \leq 5$ is revoved 2π about the x-axis

Volume $=\pi_{a} \int^{b} y^{2} d x=\pi_{0} \int^{5}\left(x^{2}\right)^{2} d x=\pi_{0} \int^{5} x^{4} d x=\pi\left[\frac{x^{5}}{5}\right]_{0}^{5}$
$=\pi\left(\frac{3125}{5}-\frac{0}{5}\right)=625 \pi$ units 3

6.6. KINEMATICS

NOTE $1 \Rightarrow$ Much of the kinematics content has already been conveered in 6.3 - APPLICATIONS OF DIFFERENTIATION

Just as we have our basic kinematics differentiation rules:

$$
\mathrm{s}(\mathrm{t}), \quad \mathrm{v}(\mathrm{t})=\mathrm{ds} / \mathrm{dt}, \quad \mathrm{a}(\mathrm{t})=\mathrm{dv} / \mathrm{dt}=\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}
$$

We have the carrecfonding rules for intergration :

$$
\mathrm{s}(\mathrm{t}), \quad \mathrm{v}(\mathrm{t})=\int \mathrm{a}(\mathrm{t}) \mathrm{dt}, \mathrm{~s}(\mathrm{t})=\int \mathrm{v}(\mathrm{t}) \mathrm{dt}
$$

From this, we can get a formula for distance travelled :
For a velocity - time function $\mathrm{v}(\mathrm{t})$
Where $v(t)=0$ for the intermal $t_{1} \leq t \leq t_{2}$:

By extension, distance travelled is the area under a velecity -time graph (if velecity stays in the some direction)
E.G. 1 : A particle has velocity function $v(t)=1.2 t \mathrm{cms}^{-1}$ as it moves in a straight line. The particle starts 2 m to the right of 0 .
a) Write a formula for displacement $\mathrm{s}(\mathrm{t})$:

$$
\int v(t) d t=(1-2 t) d t \quad s(t)=\left(t-t^{2}+c\right) c m \quad c=2, \quad s(t)=\left(t-t^{2}+2\right) c m
$$

b) Find the total distance travelled in the first second of motion :

After $1 / 2$ sec, velocity becomes negative. So we must suldract the integral from $1 / 2$ to 1 :
Disk travelled $={ }_{0} \int^{1 / 2} \mathrm{v}(\mathrm{t}) \mathrm{dt}-{ }_{1 / 2} \int^{1} \mathrm{v}(\mathrm{t}) \mathrm{dt}=\left[\mathrm{t}-\mathrm{t}^{2}+2\right]_{0}^{1 / 2}-\left[\mathrm{t}-\mathrm{t}^{2}+2\right]_{1 / 2}^{0}$
$=((1 / 2-1 / 4+2)-(2))-((1-1+2)-(1 / 2-1 / 4+2))=(1 / 4)-(-1 / 4)=1 / 2 \mathrm{~cm}$
c) Find dislacement at the end of one second:

Use displacement $=$ final position - original position

$$
\begin{aligned}
& =s(1)-s(0) \\
& =(1-1+2)-(0-0+2)=0 \mathrm{~cm}
\end{aligned}
$$

[^0]: \Rightarrow As we say that $4 x^{3}$ is the dirivative of x^{4}, we can then say that x^{4} is the
 'integral' or 'antiderivative' of $4 x^{3}$

