TOPIC V

FULL NOTES => STATISTICS - PROBABILITY

5.1 - PRESENTATION OF DATA

→ DISCRETE DATA \Rightarrow Exact number valves. Can be counted.

EG - 1 \Rightarrow Number of peaple, test scores, shoe sizes,

→ CONTINUOUS DATA ⇒ Takes numerical valves within a range, usually measured,

EG - 1 \Rightarrow Height, weight, temparature, ...

→ PRESENTATION METHODS \Rightarrow

→ TABLES \Rightarrow We start with a list :

This data can be shown with a frequency table (night), and a groyed frequency table w / equal class size :

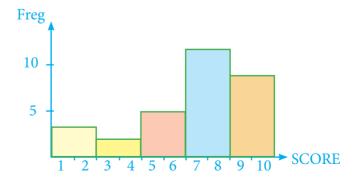
SCORE	TALLY	FREQ	RELATIVE FREQ %
1 - 2 3 - 4 5 - 6 7 - 8 9 - 10	III II MII UMUUMUU UMUUUU	3 2 512 8	10 % 6.7 % 16.7 % 40 % 26.7 %
TOTAL :		30	100 %

EG - 1 ⇒	Test scores, out o	f 10 : (n = 30)
87841	991068	678210
109868	28737	95968

SCORE	TALLY	FREQUENCY
1	Ι	1
2	II	2
3	Ι	1
4	Ι	1
5	Ι	1
6	IIII	4
7	IIII	4
8	IIII III	8
9	IIII	5
10	III	3
TOTAL :		30

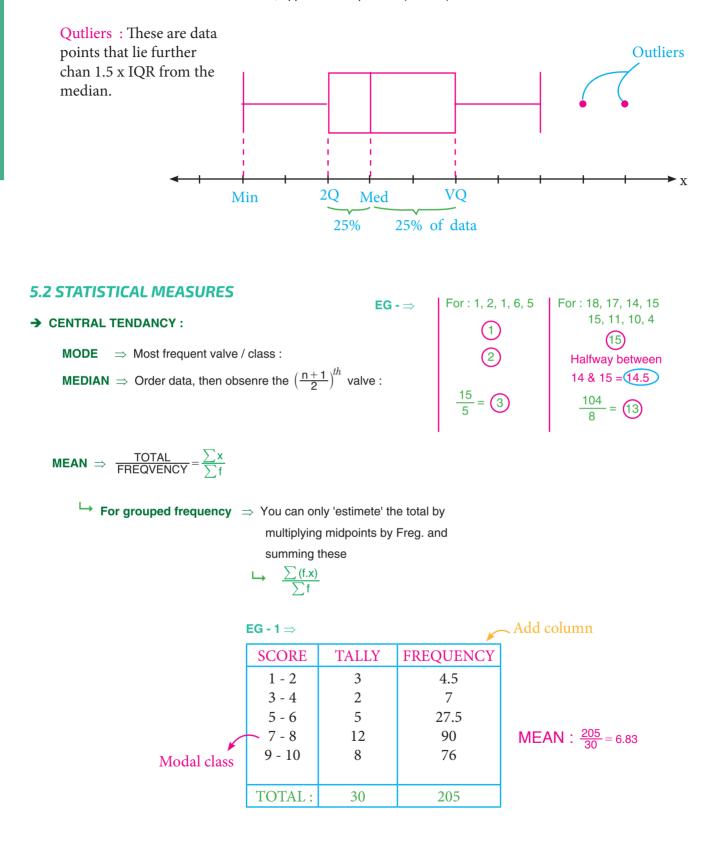
The next step here would be to display the data in a HISTOGRAM

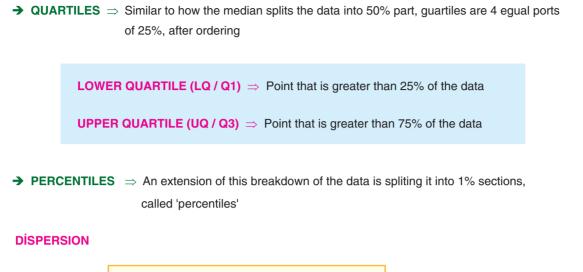
 We can say here that the 'modal class' is a score of 7 to 8.



\Rightarrow BOX & WHISKER PLOTS \Rightarrow This is another way of showing your data. It shows :

the medin, upper / lower quartiles (see 5.2) and 'outliers'





→ RANGE ⇒ HIGHEST VALVE - LOWEST VALVE = RANGE

→ INTERQUARTILE RANGE \Rightarrow IQR = Q₃ - Q₁

→ VARIANCE ⇒ Another measure of spread of data. It is essentially the average of the differences between each valve and the mean.

$$(\operatorname{Var} =) \operatorname{S}_n^2 = \frac{\sum\limits_{C=1}^n (\operatorname{x}_{i-\overline{x}})^2}{\operatorname{n}}$$

→ STANDARD DEVIATION ⇒ Related meaure, just calculated by doing the square root of the variance.
 5.0. is often used more frequently

CALCULATOR:

- **TI nspire** \Rightarrow Enter valves in 'List & Spreadsheets', then on a calculator page, press MENN \rightarrow 6 : Statistick \rightarrow 1 1 : One - var stats . S. D. is Qx
- **TI 84** \Rightarrow Press STAT \rightarrow 1 : EDIT \rightarrow ENTER, then fill column with valves. Then press STAT \rightarrow CALC \rightarrow 1 : 1 var stats ENTER. S. D. is Qx

5.3 CUMULATIVE FREQUVENCY

⇒ It is hard to see what proportion of the data is above or below a certain valve. Adding on the freguency of each successive class, we build a 'cumultative freg' colomn. We plot this against the UB of each class, them analyse :

EG - 1 ⇒		Add c	olumn
SCORE	FREQ,	U.B	C.F.
$10 \le x < 20$	2	20	2
$20 \le x < 30$	5	30	7
$30 \le x < 40$	7	40	14
$40 \le x < 50$	21	50	35
$50 \le x < 60$	36	60	71
$60 \le x < 70$	40	70	111
$80 \le x < 80$	27	80	138
$80 \le x < 90$	9	90	147
$90 \leq x < 100$	3	100	150

\rightarrow ANALYSIS \Rightarrow

FINDING MEDIAN

→ Start at $\left(\frac{n+1}{2}\right)^{th}$ position on y - axis, trace across to the curve, then down to the x - axis, then read your median. (See blue line)

LOWER QUARTILE

→ Start at $\left(\frac{n+1}{2}\right)^{th}$ position then follow the same process as above.

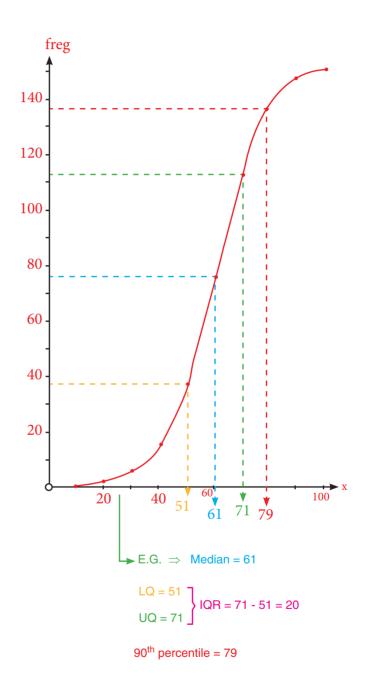
UPPER QUARTILE

 $\stackrel{\text{L}}{\to} \quad \text{Start at} \quad \left(\frac{3(n+1)}{4}\right)^{th} \text{ position then follow the same process as above.}$

FINDING PERCENTILES

→ Similar rocess, but with $\left(\frac{p(n+1)}{100}\right)$ if you are trying to find the pth percentile

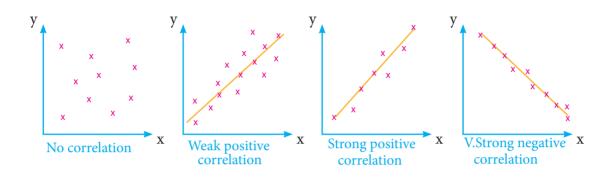
$$\stackrel{\text{L}}{\longrightarrow} \text{E.G.(above)} : 90 \text{ th percentile} :$$
$$\frac{90(\text{ISI})}{100} = 1.35.9$$



5.4 CORRELATION

- → CORRELATION ⇒ Testing the correlation between two sets of data, x and y, means that you are testing whether a change in x causes a similar change in y, and to what extent.
- → GRAPHS

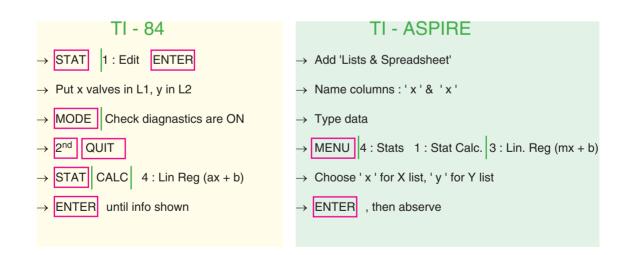
 \Rightarrow This is one way of showing what the strengths of correlation mean in reality :



→ CORRELATIONS COEFFICINT ⇒ An accunate lekpor of caycuyakioh conneyakioh 'r' measured on a scale form -1 (perfect negative corr.) to +1 (perfect positive correlation)

$$\stackrel{\text{L}}{\longrightarrow} \text{ BY HAND } \Rightarrow r = \frac{\sum (x - \overline{x}) (y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 (y - \overline{y})^2}} \text{ (You will use a calculator in exams)}$$

 \mapsto BY HAND \Rightarrow



→ CORRELATION ⇒ On the same calculator screen as the r valve, you will see a valve for ' a ' & ' b '. This creates an equation in the form y = ax + b.
 This is a more advanced version of what you may have seen as a 'line of best fit', which is more of an estimate.
 You may well be asked to use this equation to estimate y valves given x valves

5.5 PROBABILITY

- → DEFINITIONS ⇒ 'TRIAL' → Each time an experiment is repented.
 'OUTCOMES' → Possible results of one trial.
 'SAMPLE SPACE (U)' → Set of all possible outcomesin an experiment
- → PROB. RULES ⇒ If A is a set of results from an experiment with all equally likely results, then :

 \rightarrow Prob. Of A occurring = P(A) $\frac{\text{EVENTSINA}}{\text{EVENTSINU}} = \frac{n(A)}{n(U)}$

EG - \Rightarrow Probability of roolling a multiple of 3 on a fair dice :

SOL: P (Mult. of 3) = $\frac{2}{6} = \frac{1}{3}$

 \Rightarrow Two events are complementary if exactly one the the two events must occur, so :

$$\rightarrow$$
 P(A) + P(A') = 1

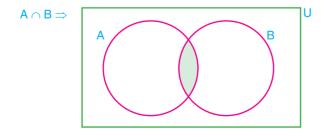
EG - \Rightarrow Rolling a 6 and not rolling 6 are complementary, as the probabilities add to 1 :

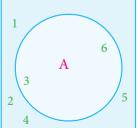
SOL:
$$\frac{1}{6} = \frac{5}{6} = 1$$

L,

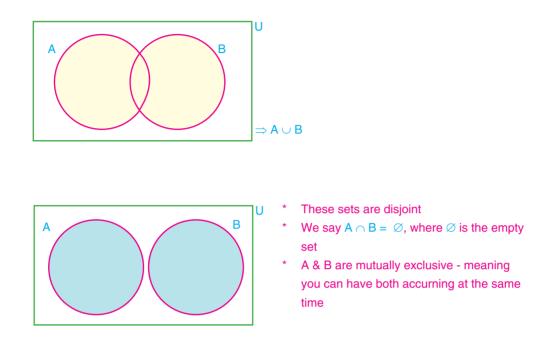
→ VENN DIAGRAMS ⇒ The venn diagram on the left represents the earlier multiples of 3 problem. You can see where the 2 out of 6 probability is derived from :

→ INTERSECTION ⇒ The venn to the right represent th 'intercektion' between sets A & B, denoted A ∩ B. These are the elements common to both A and B :

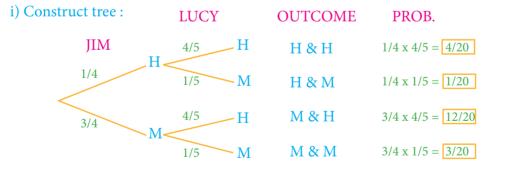




→ INTERSECTION \Rightarrow Denoted A \cup B, represents elements in A or B or both :

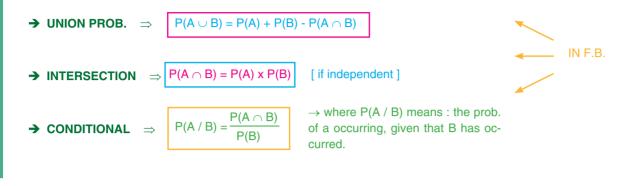


- → PROBABILITY TREES ⇒ When you have two or more trials, and the possible outcomes are not too numerous, wo can use 'probability trees' :
 - **EG** \Rightarrow In archery, Jim hits a target $\frac{1}{4}$ of the time, and Lucy hits it $\frac{4}{9}$ of the time.



ii) Prob of at least one hit ? 1^{st} , 2^{nd} & 3^{rd} options : 4/20 + 1/20 + 12/20 = 17/20

5.6 COMBINED PROB :



→ INDEPENDENT ⇒ Two event are independent if one event occurring does not affect the probability of the other event occuming.
 It can also be shown formally by checking whether :
 P(A / B) = P(A) holds

 $P(A \cap B) = P(A) \times P(B)$ holds.

OR

5.7 DISCRETE RANDOM VARIABLES

- → RANDOM VARIABLE ⇒ This represents, in number form, the possible outcomes which could occur for some random experiment.
- \rightarrow DISCRETE \Rightarrow A set of distinct possible valves, which you can count.
- \rightarrow CONTINUOUS \Rightarrow Valves are measured between a certain range.
- → PROBABILITY DISTRIBUTIONS ⇒ For any random veriable, there is a prob. dist. which desribes the probability of eac valve occuring
 - \mapsto NOTATION \Rightarrow The prob. that the variable X takes valve x is denoted : P(x = x)

EG - \Rightarrow Tossing 2 coins, counting how many ' heads ' occur

→ P(x = 0) = 1/4 , P(x = 1) = $\frac{2}{4} = \frac{1}{2}$, P(x = 2) = 1/4

- → RULE ⇒ For someting to be a valid probability distribution function, the sum of the probabilities needs to equal 1.
 i. e : ∑P(x)= 1
 - **EG** \Rightarrow (From above \uparrow): $\frac{1}{4} + \frac{1}{2} + \frac{1}{4} = 1$

$$\textbf{EG -} \Rightarrow \quad \text{Find } k: \quad \frac{x \quad 0 \quad 1 \quad 2}{P(x=x) \quad 0,3 \quad k \quad 0,5} \quad \rightarrow 1 - 0,3 - 0,5 = 0,2 \ , \ \ k = 0,2$$

→ EXPECTED VALVE ⇒ Take n trials of an experiment, where in each of the trials the event has prob. of p of occurning, then the number of times we. expendent the event to accur is n x p The expected outcome for the random variable X is the mean result, μ

$$\mathsf{E}(\mathsf{X}) = \mu \sum_{i=1}^{a} \mathsf{x}_i \; \mathsf{q}_i$$

EG - \Rightarrow In a magazine store, 23% of customers purchased 1 magazine, 38% bought 2, 21% bought 3, 13% bought 4, and 5% bought 5. Calculate the expected number of magazines bought

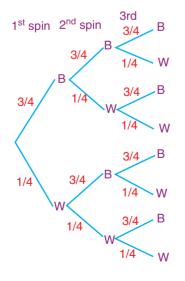
•	x	1	2	3	4	5	$\mu = \sum x_i p_i$
	p _i	0.23	0.38	0.21	0.13	0,05	= 1(0.23) + 2(0.38) + 3(0.21) + 4(0.13) + 5(0.05)
							= 2.39 magazines

5.8 BINOMIAL DISTRIBUTION

→ BINOMIAL EXPERIMENTS ⇒ These are experiments where there are just 2 possible results : success or failure (event occurning or not). This is then repated in a number of independent trials.
 For each trial, prob. of success is p, and prob. of failure is there fore 1 - p

→ OPENING PROBLEM ⇒ A ' spinner ' has three blue edges and one white edge so it has 5/4 prob. of getting blue, and
 . 1/4 of getting white.

If we call spinning a blue a ' success ', so p = 3/4, then we can analyse the prob. of getting 0,1 , 28,3 success from 3 spins.



PROBABILITIES ⇒

P(3 blues) = P(x = 3) =
$$\left(\frac{3}{4}\right)^3$$
 = 0.4219
P(0 blues) = P(x = 0) = $\left(\frac{1}{4}\right)^3$ = 0.0156

Those two are easy to calculate, but 1 blue and 2 blues both have three different paths leading to that total. So we have a 'multiplier' of x 3 :

P(1 blues) = P(x = 1) = $\left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^3 \frac{x \cdot 3}{x \cdot 3} = 0.1406$ BWW, WBW or WWB P(2 blues) = P(x = 2) = $\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) \frac{x \cdot 3}{x \cdot 3} = 0.4219$

Notice that 0.0156 + 0.1406 + 0.4219 + 0.4219 = 1

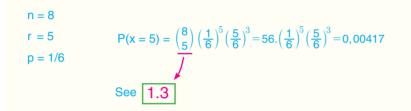
→ FUNCTION ⇒ Above is just an example for 3 trials. We need to know how calculate probabilities

. for any n. The multipilier effect is illustrated in the $\binom{n}{r}$ past of the following function :

For n trials, the probability that there are r successes & n - r failures is :

$$P(x = r) = {n \choose r} p^r (1 - p)^{n-r}$$
 for $r = 0, 1 ..., n$

EG - \Rightarrow 8 rolls of a dice, prob. of rolling 5 sixes ?



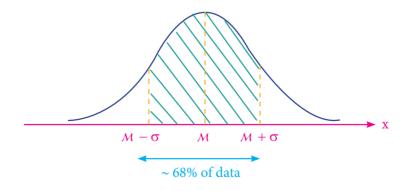
5.9 NORMAL DISTRIBUTION

When you have a large single set of valves, a histogram / bar chart becomes unfeasible. So an alternative is to approximate this into one bell - shaped curve

→ PROPERTIES

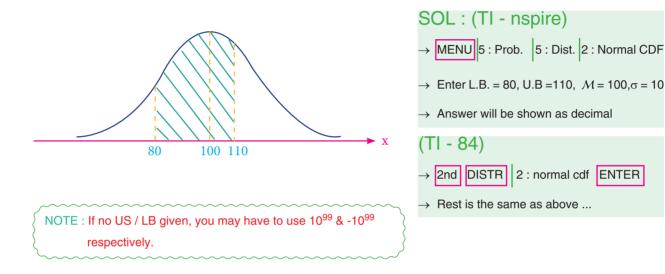
⇒ * SYSMETRICAL BELL - SHAPED CURVE

- * THE AREA UNDER THE CURVE IS EQUAL TO 1 (or 100%)
- * IT IS DEFINED BY ITS MEAN (μ) & STANDART DEV. (σ)
- * THE MEAN IS IN THE CENTER
- $\sim 68\%$ OF THE DATA IS WITHIN 1₀ OF THE MEAN
- * ~ 95% IS + 2 σ OF THE MEAN ~99% IS \pm 3 σ
- → GENERAL DIAGRAM ⇒



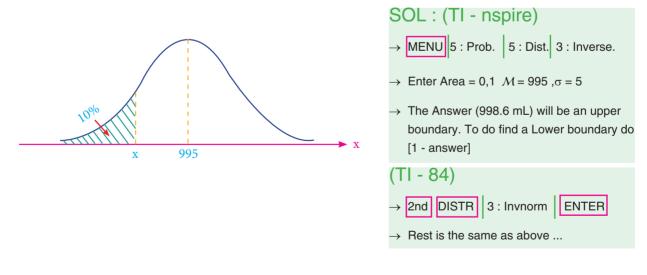
→ NORMAL PROB.⇒When you are given the \mathcal{M} & σ of a curve, you can find the probability that a
randomly selected valve would lie within a certain range of x :

EG - \Rightarrow A set of 2000 IQ scores is normally distributed with $M = 100 \& \sigma = 10$. Find the probability if picking an IQ between 80 & 110 :



→ INVERSE NORM ⇒ This style of question is the opposite. You will be given an area / prob., and asked to find a boundary :

EG - \Rightarrow The vol. of milk coutans has : M = 995 mL & σ = 5 mL. 10% of coutans are < x mL. Find x :



→ INVERSE NORM CALCULATIONS

 \Rightarrow

In certain cases, it is helpful to work with a normal distribution with M = 0, $\sigma = 1$. This is called the Z - distribution, or Z ~ N (0,1)

→ METHOD ⇒ To use the Z - dist, you must also transform each x - valve to what we call a z - score $z = \frac{x - \mu}{\sigma}$ [This also represents how many S.D's from μ it is]