TOPIC II

FULL NOTES \Rightarrow **FUNCTIOS**

2.1 - CONCEPTS

- → FUNCTION ⇒ When a relaktion is given as an equation, if each x valve gives you only 1 y valve, it is a FUNCTION
- → NOTATION ⇒ These are three ways of writing the same function :

$$f: x \to 2x + 3$$
 // $f(x) = 2x + 3$ // $y = 2x + 3$

- → DOMAIN
- → RANGE ⇒ Domain : Set of x -valves you can enter into be function.

Range: Set of y - valves you can enter into the function.

EG - 2
$$\Rightarrow$$
 y = $\frac{1}{x-5}$ Domain : $\{x \mid x \neq 5\}$ (can't divide by zero)
Range : $\{y \mid y \neq 0\}$ (this fraction can't equal zero)

→ COMPOSITE \Rightarrow If we take two functions, f(x) & g(x), a composite function will convert x into f((g(x))

We represent this with f((g(x)) = (fog)(x)

EG - 1
$$\Rightarrow$$
 f(x) = 2x + 1, g(x) = 3 - 4x : (fog)(x) = 2(3 - 4x) + 1 = 6 - 8x + 1 = 7 - 8x

EG - 2
$$\Rightarrow$$
 f(x) = 6x - 5, g(x) = x² + x : , find (gof)(1) :
 (gof)(x) = (6x - 5)² + (6x - 5) \Rightarrow (gof)(1) = (1)² + (1) = 2

→ INVERSE ⇒ You can find the inverse of a function by switching x & y, then making y the subject again.

EG - 1
$$\Rightarrow$$
 If $f(x) = 2x + 3$, find $f^{-1}(x) : y = 2x + 3$ $x = 2y + 3$, $x - 3 = 2y$
$$y = \frac{x - 3}{2} \implies f^{-1}(x) = \frac{x - 3}{2}$$

NOTE: * You can find it graphically by reflecting in y = x

* You can test an inverse by using the rule : $(fof^{-1})(x) = x$

2.2 - GRAPH FEATURES

→ IDENTIFY FEATURES ⇒

Domain: $\{x \mid x \neq -8\}$

Range: $\{y \mid y \neq -2\}$

→ INTERSECTION \Rightarrow You can find where the graphs f(x) 8.g(x) meet by setting f(x) = g(x), the solving.

EG - 1
$$\Rightarrow$$
 Find intersections of $f(x) = x^2 + 4 \& g(x) = -5x$

Set :
$$f(x) = g(x) : x^2 + 4 = 5x$$
, $x^2 + 4 + 5x : 0$

Factoriese:
$$x^2 + 5x + 4 = 0$$
: $(x + 4)(x + 1) = 0$, $x = -1$ or -4

f(x) & g(x) meet at x = -1 and -4

2.3 TRANSFORMATION

→ RULES: The following rules are NOT in the formula booklet.

 $y = f(x) + b \implies Shift up by b units$ TRANSLATION:

y = f(x - a) \Rightarrow Shift right by b units

y = p f(x) \Rightarrow Stretch vertically by scale factor p

STRETCHES: $y = f(q x) \Rightarrow Stretch horizontally by scale factor 1/2$

y = -f(x) \Rightarrow Reflect in the x - axis

REFLECTIONS: $y = f(-x) \Rightarrow Reflect in the y - axis$

EG - 1 \Rightarrow Decribe transformation of $y = x^2$ to $y = (x - 8)^2$

Translation to the right by 8 units

EG - 2 \Rightarrow Write a function to stretch y = \sqrt{x} vertically by s.f.2, and reflect in tı y - axis $y = 2\sqrt{x}$

2.4 QUADRATICS

→ GENERAL FORM : A quadratic is usually written as : $f(x) = ax^2 + bx + c$

♦ GRAPH ⇒

OR

→ FINDING FEATURES

y - intercept: found at (0,c)

Axis of symm : found at $x = \frac{-b}{2a}$

This is alsa the x - coord of te vertex

x - intercept : set y = 0 and solve with : factorising guad . form

$$w / f(x) = ax^2 + bx + c$$

EG - 1 \Rightarrow Find intersections of y = 3x² - 11x - 4 :

y - int : (0, -4) / Axis of symm : $x = \frac{-b}{2a} = \frac{11}{6}$

 $x - int : 3x^2 - 11x - 4 = 0$, (3x + 1)(x - 4) = 0, at x = 4 or $-\frac{1}{3}$

NOTE: Quad, formula is $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and as we can't have square roots of

a negative: If b2 - 4ac < 0, there are no roots

→ FEATURES

x - intercept : at (p,0) & (q, 0)

vertex : at $x = \frac{p+q}{2}$ w / f(x) = a(x - p)(x - q)

→ FEATURES ⇒ vertex : at (h, k)

w / f(x) = a(x - p)(x - q)

NOTE: You will need to use these formulae for finding the vertex to help with real wold optimisation problems.

2.5 RATIONALS

RECIPROCAL \Rightarrow is a function in the form $y = \frac{k}{x}$, and simplet form of this is

- \Rightarrow Symmetrical through $y = \frac{1}{X}$
 - → So it is its own inverse
- ⇒ Asymptotes on each axis
- \Rightarrow Passes through (1,1) & (-1, -1)

 $y = \frac{ax + b}{cx + a} \Rightarrow$ It shifts this same shape and strectches it. It has the following features :

Vertical asymp. at $x = \frac{-d}{c}$ // Horizantal asymp. at $y = \frac{a}{c}$

EG - 1 \Rightarrow y = $\frac{2x-5}{2x-8}$ has vert asym. at x = $\frac{8}{2}$ = 4 // H. A. at y = $\frac{2}{2}$ = 1

2.6 EXP./LOG GRAPHS

→ SIMPLE EXPONENT \Rightarrow y = b^x

- HORIZ. ASYM. AT X AXIS
- ⇒ Y INT. AT (0,1)

GENERAL EXPONENT FUNCTION \Rightarrow y = a(b^x) + d

→ LOG GRAPHS \Rightarrow The graph $y = Log_a x$ is the inverse of $y = a^x$

 \Rightarrow It is reflected in y = x

- ⇒ Vert . Asym. at y axis
- \Rightarrow X INT at (1,0)