Trigonometry
Trigonometry derived from the Greek words “trigonon” (triangle) and “metron” (measure) Trigonometry is a branch of mathematic that deals with the relationships between the angles and sides of triangle. These trigonometric ratios can be seen easily in a unit circle. Unit circle is a fundamental concept in trigonometry. It is a circle with Radius of one unit and centered at the origin. The unit circle serves as a valuable too for understanding the geometric interpretations of trigonometric concepts and solving trigonometric equations and functions. Each point on the unit circle correspond to the value of trigonometric functions sine and cosine. Tangent lines to the unit circle correspond the value of trigonometric functions tangent, cotangent. In a unit circle x value of a point on the unit circle corresponds the value of trigonometric function of cosine. In a unit circle y value of a point on the unit circle corresponds the value of trigonometric function of sine. Pythagorean identity proves that;
In a right triangle sine function is the ratio between opposite side and hypotenuse.
In a right triangle cosine function is the ratio between adjacent side and hypotenuse.
Tangent function is the ratio between opposite side and adjacent side in a right triangle.
Identity of tangent is;
In trigonometry secant and cosecant functions are reciprocal form of cosine and sine functions.
When we combine reciprocal form and Pythagorean identity we end up with:
In IB MATH AA syllabus trigonometry is 3rd topic. SL section Trigonometry covers up to compound angle identities. But double angle identities are included. HL section trigonometry covers all chapters SL covers and extra covers compound angle identities.
You can find several formulas for trigonometry in IB Math data booklet.
Trigonometry – sine rule
Trigonometry – cosine rule
Trigonometry – area of triangle
Trigonometry – identity for tanx
Trigonometry - Pythagorean identity
Trigonometry – Double angle identities
Trigonometry – Reciprocal trigonometric identities
Trigonometry – Compound angle identities.
You can find more key concepts in EduIB. There are many subtopics about trigonometry and mock exams in EduIB. Also keyconcepts about topic 3 trigonometry is very helpful for students.
Trigonometry has various application in fields such as physics, engineering, astronomy, architecture and many more. It helps in solving problems related to distances, heights, angles and periodic concepts such as oscillations and motion of objects in circular paths.
EduIB is a very good and rich question bank for probability questions.Also these trigonometry questions have detailed solutions at EduIB.
EduIB Questionbank gives you opportunity to solve real past paper like questions about Trigonometry. There is an example of one question about trigonometry which is very similar to question in IB May 2015 exam.
70/7/pv6l/U/RhitU2Jfa3Rn6G35wYY4wRxgxjgpFAcaJ0UJooK/ipB1cFlBpK/fc8/uZHz6AH0K/RQ+gJ9PNdlDTqv6y0BhOwfJNtX/j90xcoUVimMsoApQ1LhyWjWFGcQAalBOvRR+nCmpVhquG23Rte4f+X7P+YwT+isc2Hl8Mj8Gx4Pbz4v0fSS9Ir/5Gy4et/+mfLVr8//jb80/Nv/Yb/8L4/3Fr+mxOZiWxC3kd2InuQbcgWwI/sQLYie5G3NvCf1fVmc3X91uawaU8oLIfyX/p+R3bDk9FyDXJv5da3+mICEjbOaGC4O3IPlRIUHMOvD98IAfzmEWRZaX4FOQUlADbul63j67PD5r0Bsfb9TSMfBEAVPp/xq3/Twj8DcAne+/zWf9NEvOHthwGgdoYcS43boqE2Hmj4lGCAdxoH4AVCQByejwJQAZpADxgDC2ALnIA78IatD4bXORXEg2SQCjJADjgCjoNScAqcBbXgArgCWkAb6AT3wCPQD4bAC3j1TIP3YBGsgDUIgrAQHUSCOCA+SASSghQgNUgHMoasIAfIHfKBgqAIKBZKhg5AOVAhVAqdgeqgy9B1qBPqgQag59Ak9Bb6BK0ikAhaBDOCByGK2IFQQ+gjLBFOiJ2IIEQUIhGRjjiMKEFUIs4jmhGdiEeIIcQE4j1iGQmQNEhWpABSBqmGNETaIj2QgUgqch8yG1mErEReRN6A4/wUOYGcR35HYVAkFD9KBl7BZihnFBkVhdqHykWVompRzahu1FPUJGoR9RNNh+ZGS6E10OZoN3QQOh6dgS5CV6Ovoe/Ce2kavYLBYFgxYhhVeC+6Y0IwSZhczElMI+Y2ZgAzhVnGYrEcWCmsNtYW64uNwWZgT2DPYzuwg9hp7DccDY4Pp4AzwXngInBpuCJcPa4dN4ibxa3hGfEieA28Ld4fvwefj6/C38D34afxawQmghhBm+BECCGkEkoIFwl3CWOEzzQ0NII06jT2NBSa/TQlNJdoHtBM0nynJdJK0hrSetHG0h6mraG9Tfuc9jMdHZ0onR6dB10M3WG6Oro7dON03+hJ9LL05vT+9Cn0ZfTN9IP0HxnwDCIM+gzeDIkMRQxNDH0M84x4RlFGQ0Zfxn2MZYzXGZ8xLjORmOSZbJnCmXKZ6pl6mOaIWKIo0ZjoT0wnniXeIU6RkCQhkiGJTDpAqiLdJU0zY5jFmM2ZQ5hzmC8wP2FeZCGyKLG4sCSwlLHcYplgRbKKspqzhrHms15hHWZdZeNh02cLYMtiu8g2yPaVnYtdjz2APZu9kX2IfZWDn8OYI5SjgKOF4yUnilOS054znrOC8y7nPBczlyYXmSub6wrXKDeCW5LbgTuJ+yx3L/cyDy+PKU8kzwmeOzzzvKy8erwhvMd423nf8pH4dPgofMf4Ovje8bPw6/OH8Zfwd/MvCnALmAnECpwReCKwJigm6CyYJtgo+FKIIKQmFCh0TKhLaFGYT9haOFm4QXhUBC+iJhIsUixyX+SrqJioq+gh0RbROTF2MXOxRLEGsTFxOnFd8SjxSvG/JDASahKhEicl+iURksqSwZJlkn1SCCkVKYrUSakBabS0unSEdKX0MxlaGX2ZOJkGmUlZVlkr2TTZFtmPO4R3eOwo2HF/x085ZbkwuSq5F/JEeQv5NPkb8p8UJBXICmUKfynSKZoopii2Ki4pSSkFKFUojSiTlK2VDyl3Kf9QUVWhqlxUeasqrOqjWq76TI1ZzU4tV+2BOlrdQD1FvU39u4aKRozGFY0FTRnNUM16zTktMa0ArSqtKW1BbV/tM9oTOvw6PjqndSZ0BXR9dSt1X+sJ6fnrVevN6kvoh+if1/9oIGdANbhm8NVQw3Cv4W0jpJGpUbbRE2OisbNxqfG4iaBJkEmDyaKpsmmS6W0ztJmlWYHZM3Mec7J5nfmiharFXotuS1pLR8tSy9dWklZUqxvWCGsL66PWYzYiNhE2LbbA1tz2qO1LOzG7KLub9hh7O/sy+xkHeYdkh/uOJMddjvWOK04GTvlOL5zFnWOdu1wYXLxc6ly+uhq5FrpOuO1w2+v2yJ3TneLe6oH1cPGo9lj2NPY87jntpeyV4TW8U2xnws4eb07vMO9buxh2+e5q8kH7uPrU+6z72vpW+i77mfuV+y2SDcnF5Pf+ev7H/N8GaAcUBswGagcWBs4FaQcdDXobrBtcFDxPMaSUUpZCzEJOhXwNtQ2tCf0V5hrWGI4L9wm/HkGMCI3o3s27O2H3QKRUZEbkRJRG1PGoRaoltToait4Z3RrDDL/I98aKxx6MnYzTiSuL+xbvEt+UwJQQkdC7R3JP1p7ZRJPEc0moJHJSV7JAcmry5F79vWf2Qfv89nWlCKWkp0zvN91fm0pIDU19nCaXVpj25YDrgRvpPOn706cOmh5syKDPoGY8O6R56FQmKpOS+SRLMetE1s9s/+yHOXI5RTnrueTch3nyeSV5vw4HHn6Sr5JfcQRzJOLIcIFuQW0hU2Fi4dRR66PNx/iPZR/7cnzX8Z4ipaJTxYTi2OKJEquS1hPCJ46cWC8NLh0qMyhrLOcuzyr/etL/5GCFXsXFUzynck6tnqacHjljeqa5UrSy6CzmbNzZmSqXqvvn1M7VVXNW51T/qImomah1qO2uU62rq+euz29ANMQ2vD3vdb7/gtGF1osyF880sjbmXAKXYi+9u+xzefiK5ZWuJrWmi1dFrpZfI13Lboaa9zQvtgS3TLS6tw5ct7jedUPzxrWbsjdr2gTaym6x3MpvJ7Snt//qSOxYvh15e74zqHOqa1fXiztud/7qtu9+ctfy7oN7Jvfu3Ne/3/FA+0Fbj0bP9YdqD1seqTxq7lXuvfZY+fG1JypPmvtU+1r71ftvDGgNtA/qDnY+NXp67y/zvx4N2QwNDDsPjzzzejYx4j8y9zzs+dJo3Ojai/1j6LHsl4wvi8a5xytfSbxqnFCZuDVpNNn72vH1iyny1Ps30W/Wp9Nn6GaKZvlm6+YU5tremrztf+f5bvp95Pu1+YwPTB/KP4p/vLqgt9C76LY4vURd+vUp9zPH55ovSl+6lu2Wx1fCV9a+Zn/j+Fb7Xe37/VXX1dm1+HXseskPiR83flr+HPsV/utXpC/Vd/NVAAlXRGAgAJ9qAKBzB4AE52cEz638b7sg4ZcPBNy6QLLQe0Q6fKP2oTLQJhgk5hG2BBeBtyJI0GBp5mkH6VroaxiqGRuZWoldpEfM/SwjrK/Y5tjfcyxxrnL94EHwYvkI/HQCREGiEKswuwibKLsYtziPBL8kv5SgtLCMqKzYDmk5OXlFBRVFDSVdZWMVc1VzNRN1Ew0TTUMtfW0tHQ1dJT1ZfVEDHkNmI4LRL+PPJjOmz816zdssai2PWqVYh9i42RrbKduLOXA5MjrhnJEukCvCDeWO92D05PAS3injLbFL2IfPl9OPhUzyJwaQAlmDuIIFKdIhqqEmYS7hlIjk3YWRVVGnqSXRBTG5sVlx2fGHE0r21Ca2J73YC/ZJp+zafyL1xQHB9N0HOw9hMoWyFLINchxzA/MSDxfk1x65XTBauHyM6bhMkUVxYMmBExWl18sGy9+cXD6FPc1xRrJS66xtld+5mOqDNUW1tXXX6x82jJ5/d+F7I+4S22XxK7pN7lejrmU1n2xpbO243nOj72Z/26NbXe2XO8pup3Tu6tK4Q7wz0339bv298vs5DxJ6/B6aP5Ltpe+df3z3SXlfZL/BAGlgavDK09S/7IdEhlHDb5/1jjQ+LxyNeeEypvaS8+X6+Pirzolzk1mvd085v9GaFoZX2crsX3NX3xa/S3kfNk/+QP4YuZCzeG1p4bPelzMrpK8l36VWn6yn/NT49esf8VdAzqEK0ZYYFsxLbBMuFx9EMKKRpGWgXaebpR9hGGF8xfSG+IH0mXmF5QfrGtsP9p8cPzhXuD5zL/DM8I7xDfLfFbguWC2UIxwmYiUqKYYXeyfeI1EnmS1FkbaUkZGlk13YMSB3Vb5YIVmRrGSvbKCioCqgRlT7pf5RY0yzR6tZu1InVzdez0ffwkDBkNMIYfTW+InJJdMCs2hzJwsVSzbLNatX1nds6m0L7JLsAx0cHfWd5J0FXEiuWNdVt/fuYx69nre8Gnee9j6665BPsi/Vj0L29fcIcAq0D7IJtqRYhpiFaobJhgtEsOymiURErkd9o36P/hGLjiPGCyVo7HFKjE4qSm7bO5NCs58vVSZN+4BNut/B+Iy8Q9WZHVmj2V9zmfMUDtvnRxzJK2gofHD0zbFfRZzFyiV2J0JLD5adKm892V8xd+rnGeZKibPaVXbnyNWxNYdqS+Bzrrdh4QLxomKj46Woy/lXGpq6r45d+9SCaeW4LnlD46ZFm9utwPaYjpTbqZ0Hug7eyeg+dDfzXvb93Ad5PXkP8x7l9eY+znmS1XeoP30gdXDv07i/ooZ2D0c+ixlJen5w9OiLyrGml/fGn7/6MAleE6cE38hP68yYz/rNnX774b3yfNKH9o8/FzWX4j5d/PxmmX3F8mvKt6bvs2vc6w4/sn92b8ffGKGP3IH8iOpEH8I4YsWxS7jr+AyCAw03zTjtWbpwenUGBEMnYzqTBZGB2E86wmzLwsDymDWbzYQdYm/liOAU4hzhyuHW4f7AU8ZrxvuFr4LfjP+jwDFBDcExob3C/MLtIt4i66IlYkpiveIB4usSRyWlJDukHKVmpFNlRGRGZHN3GOz4Ilcj76lAp9ChGKkkoDSonKaioDKpmq+mrfZBvUzDXGNZ86yWvdZP7QYdd12s7jU9sj5R/7ZBpCG/Yb9RmrGS8axJqakt/N5x0zzKQsrijWWFlYc1q/VTm0JbBzuS3bD9CQdvR2HHd06XnRNdjF0ZXEfdqt2jPQw8aT2HvU7tDPZW8F7bddenwNfLT8JvhdztfzTAN1AxCBU0HFxPSQlxCpUOQ4e9Cr8RUbI7PtI1SoPKG42Kno8Ziu2Ma4yvSMjfk5oYnxSa7L935z63FKf9Dqn2afYHHNKdDrpn7DwUkBmaFZ2dkpOZW5hXcbguv/nInYKBwvGjH4+jiiSKvUqOnLhbulYue9Kv4viph6fXKxXOBlSVnuurQdVq1cXXNza8vyB5MaSx/tLCFZWm/Vd7mzlawlq7b/DdTGl73W7V0dYp33W+W+ru5fsGD0YfJvTyPe7vyxtweio6BIbfj7wZffcSvBKZ3DVVP4OeS3wPPlQtkj/rrqh9d14v2Yj/1v+AGwWjAsDxQwBs/M/jUAdA7nkAxPYAwAbnnnZ0ADipA4SAKYCWuwBkof3n/oDgxJMASIAHSAI1YAbnl2FwTlkMGkEPmAI/IHZIGXKEoqHjUCv0Es75pBEuiFREI2IcyYA0QMYjLyBn4CzNC1WGegFnYj7oc+gPGBVMKuYJlgcbju3AkXAUXCeeEx+LHyQoEooJ6zRkmse06rS1dOx0ufQI+iT6rwyxDCuMiUwQUzaRlVhFUiP1M4ewYFnOsRqzzrBlskux93PEcHJwtnP5c9NwX+Hx4EXyXuDzhDOCAYF8QVshJqGnwsUinqICojNi58WjJTQkIckeqQJpT3h1LsoO7miTq5YvVNinSFFyVNZQ4VOFVCfU2tSPaYRoamvRa41p1+nE6Orq4fQG9JsMrhq2GN0wbje5Y9pj1mc+bDFuOWu1ZL1mi7NjtRd1UHO0ciI7J7uUuLa7zXmQPPW9IndWeg/5EHz1/ZLIrf5fA9WCkoI7QwihzmFV4cu7zSIrohaitWJyYsfjlRKO7FlKck2+t087pT3VMm0qPStDOxNkDeRcyivPLywwO4o8dreooCSg1LBcukLwtEilUpVNdVRtWf2jC6BR9bJNk/u14Jbk68dvXrk12LHSxdttdi/mwemHT3p/9MkM7Hx6eOj2CGmUPHZhfH6Se0ptWm9W/i39u2fzhz/uWOhcMvvU/UVhuXRl9Zv993OrS+saP1J+3t48P7biT4TjLwFUgQlwBSFgHzgGGkA3GAffIBIkB9lAEdARqAl6jgAICTjLT0NcRryG83grZDqyA7mG0kYdQPWi2dGB6GYMHuONacYyYsOwj3DSuHzcMt4Lf48gSyimQdJE0UzSOtM+pDOka6fXor8FZ7EPGO0Zx+E89RfxGEmW9Jg5As48W1l92WjYWtkDOVg57nPu4ZLmmuQu5rHlxfF28e3nNxDACDwWLBLyFZYVXhfpFa0QixI3luCS+CT5UOqsdIqMp6zmDgk5dnm8/LrCguKU0jPlhyo3Vc+rlaof0qBqemoZakvqMOos647qtes3Glw2bDJqMb5p0mHabfbQvN/imeUrq1nrJZs1O5w9q4OYo7qTtbO/y17XUrfr7qMeP7wEd1p4x+w67dPnB5FV/CMC6gJngkUpISGXQ1fDTSOKds9FaVH3RnfEouKs4osTZhLVkw4nz+4zTqlNpU/bc2AWPk/6My2y7ueY5fYedsifKEg5ynvsdlFgCf2J1jL/k6SKe6f3Vqqc/XTuck1snVYD5vzQxXOXkq94XVVppm+Zun715oFbNh3stye76rqp97QeYHuGH9U93t/nNaDzVGSIafjBiPPz6ReJL5nHr0w4Ta5P1U67zzLM9bzLnLf8yLjwbOn055Blla+Ib32rZetBPxW3448EGEC7eQKIAxV4BbiBcHAQnAI3wSi8/wUhCygWqoKGETQII3jndyFxSHvkKeQnlAWqBo1HU9GvME7wbrfBDuHIuO/4IoI6YZrmBK0e7RhdEj0/fQ9DPKMk4xTTKaIfSYL0lfk+SwVrEpsnux6HFCc7Fw03gnudZ5V3nR8IYOE3UB5hWRFtUQexIPH9Eickr8F596Is4w4FOVf5fQpVin1KayoSqu5qheqDmsxa7tpVOgt62vp5Bq+MFI1zTCbNtMyLLD5Z2VlfsKW1C7N/6CjplOP8ztXCrd4D70nxuu8tuuugz7SfIbk6ABnoH3SHIhqSEToXbhXRGMkSlUCdiDGKvRjPnrBvz/skN3ifqqTUpHKkHU5HHUzO+JTpkXU5+1euU17N4dUjjgUXjxKOUY7fK5YqyT2xUOZafqtC9FQBfPb7n+09p1ldU8tUl1g/c97xQluj6KX8yytN3lfvNcu0HGldvGF/8+ItQntgR3snsSvgTvNd1D27+2UPph5KPKL0Vj+e7OPstx84OHj16eshwrDcM4cR6vPDo3Uv7owNvZwZX3q1Pgm9xk5h3mCmwfTqzIfZ8bnHb1vfVb7PnI/4YP1RagG78GqxdSnrk8dnic+fvrQtp60YfcV87f6W8l3z+9LquTWPdcJ68w/yT7qfV365b8R/69vR5v3BCMBprg00cGlG7d/fbba+K/0jN/l3CzZvl42ycbtstvBNA/4HHejQGwn8PNYAAABWZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAOShgAHAAAAEgAAAESgAgAEAAAAAQAAAyagAwAEAAAAAQAAASUAAAAAQVNDSUkAAABTY3JlZW5zaG90Vq05BQAAAdZpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MjkzPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjgwNjwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgorIlLDAABAAElEQVR4Ae2dB5hdVfW3dwi9lyR0SCCh19B76B0EET+aIiIgTaWI8KcIKIogICoggkjvRXqv0nvvvSeEFgg1zHferWs8ubkzc6cxc++8+3nunHvP2Wefvd9zZ2b9zlpr735NRUkWCUhAAhKQgAQkIAEJSEACPUhgoh68tpeWgAQkIAEJSEACEpCABCSQCShM/CJIQAISkIAEJCABCUhAAj1OQGHS47fADkhAAhKQgAQkIAEJSEACChO/AxKQgAQkIAEJSEACEpBAjxNQmPT4LbADEpCABCQgAQlIQAISkIDCxO+ABCQgAQlIQAISkIAEJNDjBBQmPX4L7IAEJCABCUhAAhKQgAQkoDDxOyABCUhAAhKQgAQkIAEJ9DiBidvqwTfjvkmff/FF+uLzL9LXX49rq7rHJSABCUhAAhKQgAQkIIE+TGDiifunySafLE0+2WRpov61+0H6tbby+7hx49KYjz9Nk002aZpk0olT//79+zBihy4BCUhAAhKQgAQkIAEJtEWg0BfZqfH551+maaebumYN0aow+fijMWmSSSZJU0w5eVvX97gEJCABCUhAAhKQgAQkIIFmAp999nn66suvCnEyTfO+1t606lv5smgIT4lFAhKQgAQkIAEJSEACEpBAewgQdYWeqLW0Kkxwwxi+VStK60lAAhKQgAQkIAEJSEACQWCiiSZK6IlaS6vCpNZGrCcBCUhAAhKQgAQkIAEJSKAzBBQmnaHnuRKQgAQkIAEJSEACEpBAlxBQmHQJRhuRgAQkIAEJSEACEpCABDpDQGHSGXqeKwEJSEACEpCABCQgAQl0CQGFSZdgtBEJSEACEpCABCQgAQlIoDMEFCadoee5EpCABCQgAQlIQAISkECXEFCYdAlGG5GABCQgAQlIQAISkIAEOkNAYdIZep4rAQlIQAISkIAEJCABCXQJAYVJl2C0EQlIQAISkIAEJCABCUigMwQUJp2h57kSkIAEJCABCUhAAhKQQJcQUJh0CUYbkYAEJCABCUhAAhKQgAQ6Q0Bh0hl6nisBCUhAAhKQgAQkIAEJdAkBhUmXYLQRCUhAAhKQgAQkIAEJSKAzBBQmnaHnuRKQgAQkIAEJSEACEpBAlxBQmHQJRhuRgAQkIAEJSEACEpCABDpDYOLOnOy5EpCABCQgAQlIQALVCey///7pmmuuSRNP3HFz6+uvv07rr79++t3vflf9Iu6VQAMR6NdUlJbGM2rk6DRg4IypX79+LVVxvwQkIAEJSEACEpBAFQILLLBAeuaZZ6ocad+urmqnfVe1tgS6hgB6YuCgmWpqrOMSvqbmrSQBCUhAAhKQgAT6JoF4sDtkyJA000y1GWZlUqNHj04vv/yyD4jLUHzf0AR6TJiMGjUqVXPWTDvttGnyySfvldBfffXVtO++++Y/EOeff367+nj00Uen++67L2255ZZpiy22aNe5na388ccfp88//zxNN910abLJJutsc11+fme4dnlnWmgQV/pzzz2XPv3007Tooov22u9oC913twQkIAEJ9CCBAQMGpPvvv7/dPVhmmWXafY4nSKCeCfRY8vu8886bZp555gleU0wxRZpxxhnT0ksvneMpX3vttV7D98MPP0wXXnhhuuCCC9rdpzvvvDOf++STT7b73M6c8M0336Sllloqc95vv/0601S3ndsZrt3WqaLhcePGpRNOOCEtueSSaeqpp04LL7xwWnbZZdM000yTllhiiXTrrbd25+VtWwISkIAEJCABCfQpAj3mMQnKxE3yJJ+CB+Wtt95Kb775ZnrwwQfz69BDD02///3v089+9jNdmQGtHdsrrrgivfDCC/mMf/zjHwmewbsdzfS5qo8++mjafvvt0yOPPJLHPs8882SB98UXX6Trr78+cXydddZJp512Wtpmm236HB8HLAEJSEACtRN499138wPX2s/4T82RI0e29xTrS6CuCfS4MPnTn/6UDbwyxbFjx6bHH388MZvFLbfckn7xi18kwn2OPfbYcjXf10AgmPGUf8yYMemUU05Je++9dw1n9u0qX375ZRYliI+//OUvadiwYc1ACOf6v//7v8R391e/+pXCpJmMbyQgAQlIoBqB3hT9Ua1/7pNAbyHQ48KkGogpp5wyLbfccunmm2/Oxt/Pf/7zdNxxx6XVV189bbLJJtVOcV8VAg8//HC67bbb0myzzZauvPLKNHz48PTnP/85wbN///5VznBXECCuF3arrrpq7GreTjXVVNmL99e//jW98cYb6dlnn03zzz9/83HfSEACEpCABMoENtxww0Qie5Qdd9wxz9b173//O3allVdeORFFwgPEKCTMX3XVVfHRrQQankCP5ZjUSpYQrhEjRuTqv/nNb1o9DU/LDTfckMjn+Oqrr1qsyzGS78t/JMqVCSnjOC9yNForeHIIlyLfgKfsnSk8ib/uuutyghz5DZ0t4S3ZZZddcp4Ewo7+XnLJJa02/f777+exk/AdBTf0pZdemu6+++7seYn9LW1hfMcdd6R//etf6fnnn2+uBnO4doRVe/mQu4K4oN+Ih/J4mjvUyptqoiSqM0HD9NNPnz/6JCyouJWABCQggWoE+B+KbcLrgAMOyCHr/F+6+OKL8z62fCaUneNRl/MsEuhLBHq9MOFmHHnkkfmeMKMFv7iV5aabbspPGjAUCb3hqUO8f/rppyurJ55QDBo0KM0333wTHGPHJ598ko9T55VXXqlaB8Hywx/+MJF7gBcHo58nG5tuuml67733qp7T0k4M+NVWWy0n/a+33no5wZq2fvCDH3TIgOc65Oqcd955eRaunXfeOV96zz33zNsQLPlDlR8IQcbOH8bbb789e1pmnXXWtPnmm6cVV1wxzTXXXOmss86qcmZKiJrNNtssjwXD/jvf+U7mvNFGG+WZwRZffPHc9o033lj1/Go728uHmNy11147zTDDDFnU0m+eQjErCuFXXSH6ECPcZ6aCXHDBBat1230SkIAEJCCBTID/FUQqxCuwsPAi+8oLMEYdtjHdcNRvaftF8T/p7cLT8k3xgLZa+aCwk94vFnq0SKC3E+iVoVyV0JgBaaKJJsreC6bcLYfN3HvvvVkM8DR9zTXXzKIkEpTxniBUMLAxpruyEFp20UUXpe222y4bvQgYPBGXX355FiqIJWYYa6uQXI3Rjhj6yU9+klZZZZU8JS0zf5155pl5QoAzzjij5j9OcT3CjPBaIG4QGZSNN944DR48OHs97rnnnrT88stH9fG2UZ9QMFaaHTp0aH6CgyHONMl4IhBliAymzo2Cx4qx4FVhZjXGw+xrJN8zmxn5GO0t7eXDtMjMQkaIFdt11103h7KRs4T3hjA2RCv972hB+MT5W221VZpjjjk62pTnSUACEpBAHyCAXcL/XUp5wUUm+uH/JQ/1onA81jzhvLbK18X/5IeK/+dfvv12Gnn22WnRIvRroiIkPsrbJ5+cnisiJwqDIi1Q2BMzF3aLRQK9lkARttRiGfnue02FZ6DF4505UCRjs+J8UxG6VFMzhUGd6xczdDXXL4zPpuIXOu8vvADN+3lThO00FZ6CfKzwjDQVoUPNx4vclbyfc6uVYt2PfJz+vfjii81VCiO5ef/ss8/eVMzM1HyMN/SneDKf6/zoRz8a71jhOcj7f/3rXzfvL1y0TcWUyXl/EW7UvJ83xVP9pmLNk3ysiDcd71hbHwqB0FT8UcvnPvDAA+NV/8Mf/pD303ZLpRAXuU4hBpsOO+yw8ap99tlnTYWgyccrx1gY63n/QgstlFmUTywWiGoqREo+DtciZrb5cJlr887iTUf4FGF1+RpzzjlnUyFSys01cV+LpPWmQsSOt7+tD0888URTEQ7XtMMOOzQVnpimIgeqaZJJJslsCvHX1ukel4AEJCCBPkoAm4BSTObTtPvuuze/rr766qYTTzyx+TPH+Mz+cj3Oo0Q7+UPFj0+feqrp1n79mm4t/rfyemTEiKZx//0/99bf/jbesRf22qvi7OofP/roo6biwW/1g8XeImqgqYhgafF4awewncK2eKroe/HAs7XqdXOsO5kBAVvwmmuu6TIehShuwh4uv1q75525MHqi1lIXoVyFIZtmmWUWNumDDz7IW37gleApA2ue8CS8XHCBsqghTx1YGI8n711Zdtttt7TYYouN12QhVprDzng631YhnIn4UcKOCHkqFzxEBx98cN5FOFV7Ch4WcjkIu8JrUC4k3DG5AN6dlnIjwqVcCIw8+1T5fHIr8BJR4FouJNhTCJeCRbngqTniiCPKu9p83xE+hYjI7RKmV7mYJDOTkafE+NtT4HTSSSclplvGC4dnCK8SL75nFglIQAISkEBbBArDLEdBxJb68Z5t5efYlw+08mPKIpx4vuJ/VBFakWt9WOS8Pl4k279Z/C8OTwkHpi/CtIccfngrLf3vEGHwK620Uot2ArZEW2Hh/2tt/HdEUZx++ul5JzOv9tY11sbvddufupMZV8fGIkqoq0ohgBO2LEtyxOvUU0/tquY73E5dhHIxutdffz0PcuDAgc2DDbcoeR3VCovirbHGGjmMiJvZlSuoVgqJuP4GG2yQjVUEU+FtyaFMcaxyS8gThbCjkwtXa2WJP0oPPfRQ5aEWP3MOYWaUyCkpVybvgnU3/v73v6fjjz8+i7fy8fJ7/ighkCpLiA76HYU/NIghwtcIqatWYNOe0hE+5PoQk8sfu3333Tfxizf33HO357IT1GWGOJLoYUviPuIHocKkAojjjiy4OcFF3CEBCUhAAg1LAKOS/7sU8lzJmS0iGtJPf/rT/ACV/5+FxyQ/aB0yZEgOS6cuIdG1PNSbdaedqN4sRBAnvKIgSipDvOJYS1smjGG6/CLSYrwqGOCs58X/wM6WXXfdNfFqlPJtMOtKVggTXr2pTGh19qbe/bcvRfhQTubmI1PfRiHfhMLT+JZKGKVdqTK5Vks5K3gbIueAPzqtlRBW/JLvs88+E7wwrCnM0lHrjFKFm685fpVVyhEPla8QVUxJSG5LS4WE92qlCGPKu8t9Co9UEUKVhUG18xCKxNLWWjrCBxGByMObgceM7wY5MjsVf7RhE2Kv1j5Qjz6TyM8EBVtssUUqwvES+Tdcg9yZWrxj7bmedSUgAQlIoLEI4MHn/xMvJmOJQlQD+8rRDRyPupWe/ziv2hZxUvacRJ2OiBLO5UEjERjk8JYLURH8/ysXHtqRc0l0C/mrCJcoPKRlumQeLGN/vPPOO3EoXXvttc0RI1xnkUUWabb3qETkCLmuFCb0wYg+5phj8gNHokLuuuuu3EfyXXn4TJ5vT5b2MCNyhT5jTzITG2v3xYPlGCtLPGDHVnoyYAXLYMOsbrCbdtpps6iFC+XsIudo++23z+9b+1FLLlNr53flsboQJgDGoOTpPTNuRYmQnNamno1jrD1Ra2lrimDaIbG8pYKQorS1wnokx/OFK/Ifqr4YN96XCK9q6Zqxv+xaZcYwhELliz8QlCIeMocnxbmd2fKEh8Ifp5YKzLhmraWjfHAxv/TSSzmkjDA5ktV5UoXHBg9a5R/ZWvtTrodo++53v5t38YfVIgEJSEACEmiJAP/LeZjHqzwzZOwrP+hrqY1vez/iY/3110///Oc/my+NPcK6Kttuu23zPmwmZiclXJqHdhjYTBBDpAv/95l4BxuMtekwpsseGCbTibBwuDz55JPjzUbKDKNvF0n9FNrCYGfZA0K9mQhp6623Tpdddlnez4ygLMjdk6VWZnBiciIedjIWJu7BYxbTQzNWJliCB0tSlCODqMtnbGIeYGM/woFwLHgRGocYpCACizyeFpEQ8cHDdO4dUTItzUTbYgPdcKDXCxO+8OE54Ik1RnYUnihQWgMZx6Iu9SeddFI24335847//mgp96Jcp0jmLn9sfo/RiyFMIfeltRKzYmFEd0Vh5im+4BTa5g9FS6+4HuFctQixqN/Slhm6EBLkAJXXLSnXZ/aR8h/k8rFq7zvDh74QysZTG1zk55xzTn4qwXoz5T+K1a5b674IK2zv9NC1tm89CUhAAhJoDALFRDd51k1m3uQpN8YghjWGKfvYlmcc7cioy7Nvlc+PnJOWphIu1618z1pyeEgi2oCHfHhG4sEw9Yn6IMKhmBAnG8l4fHhyz1T/2CXMMsaTf7waPL1nWYSOFB7QEuXx29/+Ng0bNizxEBKRgiG+8MIL55Aw7Cn29WSphRkeDmacpe/kxP7xj38c7wE0YyWflVA68plZ7oDCw3a+K3jSEGnUw65CpMCcyBSEYOQC77333imii6oxITSfsELEH9ElZQFUrf63sa9X55igGA866KCswIF/eEXSVhiu5557bjrkkEMmSERGeZKsTCkLkwjv4gvOE/4wMAN4JHHH52pb3JtLLrnkBIdIkKYQQhRfpAkq/XfHCiuskN/RFuNsj8u2WpvhLeFJRfkJR7W6fJGZyhdVTSgSTxo6U7g/MMbw/+Uvf5kXjSrnp/A0CFdle0pX8SH0jD+kCAjESi1hfTwVYpppfsFbKvwyU3CfWiQgAQlIQAItEcCYLHvrMdIJe8JWiELkQVsh4FG3clspSgjfGlB4J17Ag1B4a0KctDfPBOOZEHq8JAgK8iv5P08oeJSYdKa8D2Oap/CsPce4EGZR+N8eD1FjX61bjGeMb0pMqUwfKSwFwIQ0PIwMOy8f+JZ/1MIML0Y5Aojc2LKdSpcJ8cK2KhcerGJPMcZ4yE7uMIIRrwmCERsQWwf+rRXuY7RBvaOOOirfJ7wsMeFUa+d317Fe5zHh6T1eDlxzw4cPb57liicMuJnKZa211sqL25F4zaxcCJkouAdR5oRVEc5TjulEIcYvCfGLuMGiEJZD/GJbhdXEK1dQZ/asQw89NJ+6xx57tNVEDiticT7cnT/+8Y8nWFEdlxxjwJ3XVsFLg1eAUi3pvfJ8fnkj4SwETWWd9n7mFwORx70jZIp+k7iPq5AnQowzEudraZs22suHpzI8rajmxYg/hIS4tVVggreJpwc8DSoXRB1PkMhZgWOExpXr+F4CEpCABCQQBDAoMT55EZ7D/w+M/DFjxuR9bPnckTK2+B9VOfsWAmT24n9hOecEcfJy8RC01hJeEuwr/idi9/BAttLo538q/wvJ6yQ0nRf5lzzY4xgeDGyyKHhRqhUezvIgsZz7Wm1R7cpzYdpbSq3MEB0h6KLvlZ9jf3m71157JWxfhC4elSiE1hHtw4N6JuupZaazsiihHYRzr2BZQGyxfBvrmLCOx+BijRJexZe9qfhi5nUoCkZ5WyjBpsLl1WIfC2M3n0f9IsyrqXjy31TkEjSv41F4VZqKL/kE559wwgnN1ynCfpoK47Kp+IXL+5grOq5feBSaz431Noob18S6I9ThnOJpfFOhdJsKZZv3sX5KZSniKvOxX5fWMaFO4T5rKty3+Rhrj7BORqF6mwpR1syimLWjsrkJPhceo9xGId4mONbSjkJxNzF2xlFe76SlvkY7rEHCOYXIiF3N28KL0MQ9C36xLZ5yNBUipal4cpKP1bKOCY22l0+xoGZuv4hnbSoS45pYa6VwaTZxffpS5P00Fb/8zf1t6U0x21bzmjScVzyJaSpCCZuKGceaiqdHzeM78sgjW2rC/RKQgAQk0McJFA9FM4EitLuZRBGV0YQtwJphxdPpvJ8tn9nP8ShxXrQT+8vbrz74oOmuWWedYA2TqFNey+SdM86I3a1ui9CspsJ4znWKh3FNhcBo4v9qMeNl3nfggQfm9b34UCRO57rFJD5N2BXFA+am4sFkUzFxTxPrqmErFJEUTYX4yrYG/49Z14xSGNJNxQPI/J4fxQPJJuyZ4kFz5sCaYcWD3ny8ePjaxDppUYqHhvl/MdePUgikJtbn6InSHmbYQPBkLT/W2SvEXF4frViIOne9cqzsxDbj+wFTbEVY8b4QJOPZydglsVZd8cC8qQgHq4qD71sRMZPXfOP7h72ETdsdpa7WMSHcCg8JL1Q1ihnvRgEshyOxb/PNNy9sw+qFOE0SqnhKzuxJPK0nfIuYPRKwisWKctJV5dlM0fe3v/0tu6vwquApYY0OngrgvWirkMCF2xIPAZ4T8idwT+LZISaw1oK7jP4zKxd9xuuC54NkMJ5M8NShEFGtNsdsCiRNUWrxlkRj8GLqYEpXeU3Iq+GeEluKN4r4xrPOOiuH4zGeKLWq8vbywd3MUyfC1Jgp7LTTTktnnnlm/m5xz3iSQCxqWwVvzWOPPZa9Z0xBzFMczmV6YPJoRhRucj4TtmaRgAQkIAEJ9BSBiYsQpuFFjsd8RdRCtVAtZutarLCLFi3sofas+l4YqHlIhGUzGxYhQ/zvqyw8eceOIUwaDwkhVthX5EOQ78lMWeR7MmkMM2TyaqkUhnm227BPsH0iV6Kl+r1tf63MmIynEGA5AR4u2BZ4QWopwZQwLyI7mFTor3/9a04fIGwOu5e2KeX3lW1jB5Miwf0iZ4cZXLGherr0Qxm11IlRI0enAQNn7B2unZY6WbEfo5FfEmaAqLWQT4ChzC9dRwruL8J7SDzqbEFkEJaF4KrVeO/sNb/N84kB5ZeIGSkiLrQ9128PH77aJHSx5Re/nPPSnmtGXfKRCBekrUa8NzFOtxKQgAQk0DUECEcmHBiDMXIiCB/H4CafhIevGJjkDRAixcM9HqaFPUEuAZPtRDtd06vuawUxwv/aytwIrsj/71pzaWmnMtSo+3rdcy1jn2BXdMVYsUNpi4fs7SmcQ+EBbHcV9MTAQTPV1HzDCZOaRm2lHiFA/CN/eCnEkLZHPPZIh72oBCQgAQlIoBMEiABhVqrOlq5qp7P98HwJdIRAe4TJ+On+Hbma50igRIDQqXXXXXe8hTA5zNMgwtUoJMIrSjIKf0hAAhKQQAMTYMZLogOqeRBqHTb/Pzs7c2at17KeBHqagB6Tnr4DDXR9/njifmbLTGjkzLDuDDknxC0yEwmuQmbqcordBrrxDkUCEpCABCQgAQm0QKA9HhOFSQsQ3d1+AsQ3siYLCWvV5mIvZsnKEwOUk+DbfxXPkIAEJCABCUhAAhKoFwIKk3q5Uw3cT7wkJPUV0wXmmctYFKknF+xpYNQOTQISkIAEJCABCfRaAu0RJuaY9NrbWN8dYwHLWMSyvkdi7yUgAQlIQAISkIAEvg0CvW7l929j0F5DAhKQgAQkIAEJSEACEuhdBBQmvet+2BsJSEACEpCABCQgAQn0SQIKkz552x20BCQgAQlIQAISkIAEehcBhUnvuh/2RgISkIAEJCABCUhAAn2SgMKkT952By0BCUhAAhKQgAQkIIHeRUBh0rvuh72RgAQkIAEJSEACEpBAnySgMOmTt91BS0ACEpCABCQgAQlIoHcRUJj0rvthbyQgAQlIQAISkIAEJNAnCShM+uRtd9ASkIAEJCABCUhAAhLoXQQUJr3rftgbCUhAAhKQgAQkIAEJ9EkCCpM+edsdtAQkIAEJSEACEpCABHoXAYVJ77of9kYCEpCABCQgAQlIQAJ9koDCpE/edgctAQlIQAISkIAEJCCB3kVAYdK77oe9kYAEJCABCUhAAhKQQJ8koDDpk7fdQUtAAhKQgAQkIAEJSKB3EZi4re589OGY9NVXX7VVzeMSkIAEJCABCUhAAhKQgAQ6TKBNYTLd9NOkfv36dfgCnigBCUhAAhKQgAQkIAEJ9E0Co0aOrnnghnLVjMqKEpCABCQgAQlIQAISkEB3EVCYdBdZ25WABCQgAQlIQAISkIAEaiagMKkZlRUlIAEJSEACEpCABCQgge4ioDDpLrK2KwEJSEACEpCABCQgAQnUTEBhUjMqK0pAAhKQgAQkIAEJSEAC3UVAYdJdZG1XAhKQgAQkIAEJSEACEqiZgMKkZlRWlIAEJCABCUhAAhKQgAS6i4DCpLvI2q4EJCABCUhAAhKQgAQkUDMBhUnNqKwoAQlIQAISkIAEJCABCXQXAYVJd5G1XQlIQAISkIAEJCABCUigZgIKk5pRWVECEpCABCQgAQlIQAIS6C4CCpPuImu7EpCABCQgAQlIQAISkEDNBBQmNaOyogQkIAEJSEACEpCABCTQXQQUJt1F1nYlIAEJSEACEpCABCQggZoJKExqRmVFCUhAAhKQgAQkIAEJSKC7CChMuous7UpAAhKQgAQkIAEJSEACNRNQmNSMyooSkIAEJCABCUhAAhKQQHcRUJh0F1nblYAEJCABCUhAAhKQgARqJqAwqRmVFSUgAQlIQAISkIAEJCCB7iKgMOkusrYrAQlIQAISkIAEJCABCdRMQGFSMyorSkACEpCABCQgAQlIQALdRUBh0l1kbVcCEpCABCQgAQlIQAISqJmAwqRmVFaUgAQkIAEJSEACEpCABLqLgMKku8jargQkIAEJSEACEpCABCRQMwGFSc2orCgBCUhAAhKQgAQkIAEJdBcBhUl3kbVdCUhAAhKQgAQkIAEJSKBmAgqTmlFZUQISkIAEJCABCUhAAhLoLgIKk+4ia7sSkIAEJCABCUhAAhKQQM0EFCY1o7KiBCQgAQlIQAISkIAEJNBdBBQm3UXWdiUgAQlIQAISkIAEJCCBmgkoTGpGZUUJSEACEpCABCQgAQlIoLsIKEy6i6ztSkACEpCABCQgAQlIQAI1E1CY1IzKihKQgAQkIAEJSEACEpBAdxFQmHQXWduVgAQkIAEJSEACEpCABGomMHHNNa0ogRKBb775Jn969NFH08knn5w+/fTT0tHW36600kpp6623TlNNNVWaaCK1ceu0PCoBCUhAAhKQgAT6BgGFSd+4z90yyq+//jrdcsstady4cWn11Vev+RrzzDNPmnhiv3o1A7OiBCQgAQlIQAIS6AMEtA77wE3uriGOHj06vfbaa2mrrbZKeEH69+9f86WamppSv379aq5vRQlIQAISkIAEJCCBxiagMGns+9uto3v11VdzKNZCCy2UPSBffPFF9p4gOCpFByFb4SWJbbd2zsYlIAEJSEACEpCABOqKgMKkrm5X7+ksHo877rgjzTnnnGm66abLguTOO+9Mzz33XCLEi+PlMssss6R11103TT311OXdvpeABCQgAQlIQAISkEAmoDDxi9BuAogO8koee+yxtO2226ZJJ500ffnll+m8887LYgVvSSS1s8WTsuGGG6aNN9643dfyBAlIQAISkIAEJCCBvkFAYdI37nOXjjJEydixY9OQIUOyCEGMfPXVV2mPPfZI8803X3PYFoIFT8oaa6zRvK9LO2NjEpCABCQgAQlIQAINQUBh0hC38dsdBALktttuS0svvXSaeeaZ88XxjCy55JJpyy23TAMGDMg5JnhWnn766cQsXMOHD1eYVNwm+IwZMya999576ZNPPslH2Rf5OfGecLlpp522XZMLVFzKjxKQgAQkIAEJSKDXE1CY9Ppb1Hs6iKFMwQty++23p/322y9NMcUUeR/CZOjQoXltEnZQFwFzww03pA022MA1SzKl//2Az+eff54uvvjidM4556Q333wzsTYMooQcnRAnTBRw8MEHp0033TRNNtlkzSFy/2vJdxKQgAQkIAEJSKAxCChMGuM+fmujwHhGcCBO5p577mYvCIb0rLPOmp/qhyh5+eWXsyeA5PgwtL+1jvbyCxEOd//996d77rkne55mmGGG7HFi0ck33ngj7ycvh8/MehY5O718WHZPAhKQgAQkIAEJdJiAwqTD6Br7RAxnntwjQgg3wnAmyZ0V3m+88cZsROMtCcGB4bz44os3G9CEJh1zzDFp8803T9NMM01zvcam1r7Rffjhh+n//u//Erk65557btpiiy3SwIED8wQCeFC22267PIsZnPGcBOv2XcXaEpCABCQgAQlIoD4ITFQf3bSX3zaBzz77LN11113poIMOSvvss08WJ3hLECn/+te/0vLLL59Di8r9wnhGoFDv7bffTg8++GBaZJFF0iSTTKJRXQZVvIfTyiuvnAYNGpQ5IgCZSpkX7BFz8Vl+FfD8KAEJSEACEpBAQxJQmDTkbe38oAjHuu+++3JY0XXXXZceeOCBPO3vO++8k55//vnsMcFgrlYwrAlTmn766dOUU05p0nYVSAgT+PTv3z/nmsAVYQf3jz76KCe7B1/2WSQgAQlIQAISkECjEzCUq9HvcAfHR27Dbrvtlo3knXbaKZ155plp/vnnT6z2Pu+88+aQozCcKy/x/vvvp/PPPz8vvBhelMo6fv4PAfi89dZbibCuySefPHtSECnxnlp4oCiIGcO5Mgp/SEACEpCABCTQgAT0mDTgTe2KIfGUnlmgyC3Zeeed00MPPZRuueWW9MQTT+TcB570U6oZyu+++2568cUXc9iXT/tbvxvk8fz73//O4gMxQiGPhxm7OEbBAxXiJO/whwQkIAEJSEACEmhAAnUpTDB2MdRI0OY9Bhzvy/t6+l7RJ4z4XXbZJedkYGjWU+HpPE/zESerr756XjTxtNNOy3kjiy66aA5BqiZKGCMeABK6H3/88XxvuEfdKVBom9wXEsafffbZNHr06Gajvjcz5/v66KOPpptvvjnNNddcWeQxltlnnz2LFXJ0br311iwK+X5bJCABCUhAAhKQQCMTqFthgqHGk+Srrroq/eMf/8hrQRBC1FueLGO0059XXnkl4UHobuO8q7+k9J8XnhHyRH70ox+lUaNG5elrZ5pppqqekugDXhZmkkLUcD+6U5RwzRCmd999d17gkbVBwtsQfeqNW/gykcDHH3+cVltttcyUfSxUyfd7zz33zDObIVQQihYJSEACEpCABCTQyATqMscE4y2e6PNk/re//W1exI9F6DjWkYLxTJw/52OIMzVuGNQdaZNzmT7373//ezbSI/SpI33r6XNgvcwyy+T1NlZZZZWc/9AakwUWWCBts802eWapWICxK8YA02rXxbPDPaNveE54ddbD0NK1WtrfkfExFr4jM888cxoxYkTz2Fi3ZI899sjTMu+www555i7uQbWxt3Zd+kr54osvslDjXrSnnTi/vdet7FNcn9+BCFcr1+lKpuV2fS8BCUhAAhKQQH0RqFthgpHDa4455sgG8CyzzJJnMmoJP8ZPeFMwWjm3bKQxXeuhhx6aw4GOO+64bAxSjzrlBO4w1miLF0ZbvOIYn3lPAjnTvtIGhfaiDtcPb0K0wz6Olw1BnvxHP+NY1Gd/tN3SuLtiP/2B89lnn11Tcxjahx12WE11o1IIifLY2cfneHGPSLhnzLAoe0WiDu1FG3DiFfXZxrFom+NxDvwpHIv+xDlcjxeF7wPt8DmuEdeP+rliGz+oy9ollWXGGWdM2267bX5VHqvlc/QLXozj9ttvTw8//HBiEgMWu4z+l9sqs6RfFMbG/vhdYV+t4+O6nE9fCOlj7RummB5RCLBy4Xhcm/eUYFuuF3zZ1tqH8vm+l4AEJCABCUig9xOoS2HSEawYPaxWTv7DyJEj07Bhw/J0rRhpGFA8Zcd4o2BIYcARskQYDXXKhbbIY3juueey8MCwGjx4cG6PYyQvE8JFGTJkSK7De54ckweBZ4b9TBdLOFrsYyV1rsn1aAfD8umnn+bU3D5eAfrOGiGcS15CtSfQ+YQ6/EEeDqueEwJHwUBnjIgROLGSPJwRe7DkPmEAwyByNGLY3BNmt3r99dfzbGKcUy4Yt3E9QqnmmWeefM/Zz+KQL730Uj5Ou9wTpvDlPrG6PYsgco+4Nn1lpjLqII4JXwuBU77et/me7w3f8zvvvDOdcsop+fu9wQYbZM9dGPiV/YEn7D/44IOEx4s1VBgbHGC5xBJL5PMrz2vpM78f5MicfPLJOZRxhRVWyN/5yvp8z+kTuTaXX355XlyS/vM7WS54exBWjAPBb5GABCQgAQlIoPEI9P91UVoa1thPP0tTTvW/1b1bqteT+zGmrrjiiryQH3H6lQXDBwMSEXH88cfneH4M0ZNOOikbP3POOWd+AnvUUUel2267LQsUDN577703G2bLLbdcDuvCeKLQHsbaBRdckI3kaaedNhusL7zwQjZMMUqZwQoDlfwXthi30YennnoqG9oYjYgThAdGIcbw1VdfnYYPH95siF9zzTVpwIAB6ZlnnsnJ5Bhn5CQgTjA4l1566WwQl8dMWxiFiBe27733Xt7yvvKFQCJkrfxEPNoKgzG2sb+jW9qJEizjc3n75JNPpgMOOCAbqISPwQ5Bee2116Z99903rbTSSlkYwJP7xMrp3APyMjCgSdAfOnRoFgtMcUy+CQnkPK0Pg5Zzub98B+AOl7/97W+ZO94exAn3eO+99877OM4q9meccUa+x4hauLJaOzOVIRjPOeecxL3FqOc6XcWtzKbae64TRjyign7z3WDs9HvLLbdMP/jBD/IEBoiNSm8D5/OdgTvnI/L4/lIX5hzjfnAvYMN3Je5f3NPoA4IC8QYL2DLb2CabbJLzk9jyXa4UbfSdaxxxxBH5XEIz4YlIp6+0x+8oL343BhfCFFEYfajGxH0SkIAEJCABCfQeAuiJqaaasqYOje8KqOmU+qqE4YMR+Yc//CE/aV933XWz0YUB9Kc//SmHKGHw/PjHP84GLIb673//+/z0HIO3cq0O2kOUYHwyOxWGHMn3jz32WBZHPD1HQOBp4Sk/M3PxtBgDGINvjTXWyAYjCxAutdRSuS88aed8jEOMOwxxDEyEC2uHcE0SuxEbnINgwRuA4VlZOP/YY4/N9TmvtcLY0KUrrrjiBNXC2JzgQBfsqDROo0n6g2FP8jzii/Ax6nKvEJ94AeAw33zzZeMULwf3gRXUMWYxcDFYEXLLLrts+uUvf5mF36677pouueSS9JOf/CQLMTwBRx55ZM5JWX/99bMBzH1CfMAcYcML4fbII49kUbn55ptnYxvxw3296KKLspCkHe41npT9998/36v99ttvAgEQY+zqLV4f+kn/+Q7ddddduT9bbbVVs3Dl+wgXDP1yiXuMV4nvEzk67GMNGgpigLHyPWPig8pCXb6rfLf53scMY/wO8Z1fe+21s5Dgd6Ty2tEWIpF+b7zxxmnBBRfM4m/VVVdNCy+8cP594Z4cdNBBWaByjyt/H6MdtxKQgAQkIAEJ1D+BhhYmGE68MJh4un7ggQdmIcBtW2SRRfITdox8jH2MYJ4SY/jMNttsOccknsrGNm43RjNGMsn2hBthdHE+QgADjul1X3vttWwgjyhi6jG++IzBhZHGk2Suw9Ng9mHY/fOf/8yGIG1hbOLhWWeddZoNOsaAYYYhzcrr9JEn95UFQx6RxRPqtgrjQvhUjo/zMDgx4DFMqx1vq+3K49wH+jZo0KDmkKLKOnxGDJJfgXeEa8OUMCpeeMRuLbwf3/ve97IgQdxhAONViafoXIfkccQWAgfBwOuVIrQuQoS45xjSGLzccwTNeuutl04//fR8z+DK/aG/nIMo4T4jYLkHzLKGN4yFJrk2BW8AIV6XXnpp+vnPf95q2BNtco/bEo654eIHXrfoT+xjSxsY9Ygj1o1hDHg36Bfj4r7FvYtt+fx4z3dtscUWy8IdzvyuIC623377fA8QfoRyVYoLWPO7gCfyvvvuy5xJ1qctWFC4buV5cd3Ywg6PF1zo9+DCK8L3hM+E4CGQ4veMa1okIAEJSEACEmhMAg0pTDD4EAMYMRhFhO3wVPm6665rziMhbAWjilAwDFAMKM4JAxBDt1qh3lprrZUNwA033DCvjr7PPvtkg4pr8TSfQhgMRh6GK+dg6JGHQD8IGeNJP0/8ESoPPPBAwsjmqTH18BDQDgYpfUPskP/CdXj6zYxXFNqtLJxDu7zoT7U6nAMbnv5zvJrhSB8IG8Pg7aqC0fnDH/4wM2Fc5RJ9wPDHq0RBwCEquFcYx/SZPATuGcbqZZddlmevQszEOLiH5AfFU3ruI/c0RADGPN8DRM9ZZ52VDV/OJS8IgRJTOwc3vGIYxdyvyFPBO4HQpM9MlEDBiMbzgKAjX4n7EGPKFf77g/4hLAm3og9tGdr0gzCqEMHRL+7dK4XY4juBJ+3KK69Mg/8b5sR1q1273I94Dxe8Q3jtaJt2GRsiEPHLuAnNCn5xHlv6Trgbnj44ILLj2rEt16/2nu97CGx+XxDpfE8ohFzynu9E/I5Wa8N9EpCABCQgAQk0BoHq1nedjw0jCsMagxbDFmMTA2fHHXfMT5MxwDAQyU/AaMXACoOvraHTNkbbiSeemA455JAcG09uCIYZYoCCwUmMP54YxAhGGuE+GMuEaLEIIN4Q9mEMI5wwbDG+6Q+GNsY1feLFE2wMXaaWjX30n3Yr+821IzSn0vivHBvnYxRieFcKMYzw7bbbLhuq1OtsCcYIq7bagwFjRcBh7N5zzz2ZDaKCMDrCq+AKAzxflX1vra8Y3niqMLpZ/JIthf7ttddemT3XL5dgHvv4btEOoUqEh1H4jKeEwv2jxJjzh//+YB8ejYMPPniCe1euV37P9THOywWG5Hz84he/yB6LrbfeOueS4DUZXAgUvmttFdqFHeFrtEffYEzoFp40RENlKX/feE/YGqGD/C7w/f3+97+fhQ7f3/YWHhQg6qLviHgmeWjre9ze61hfAhKQgAQkIIHeSaBhhAlGVRQMJkJ1MJYIz8H4xLhBVCBQwjDmM68w8sMAoi32U2grjDH231qEEpG4TlIxa5QQFvTnP/85z0BEwi51SIJGcPCkG0McQzbi/EmS59iaa66ZDTC8IQgPcgIQCBhn1CcMiX5yHk+kERDhGeD8O+64IyeCVxqs9Jsxk2sQYwgulVsMT8KZMCgrCwZrGPwx/so6fA7ubDHOYUi/K8/hOPuifjCvrMdn+kUoFl4A8nLgA2/2M168RxjlwbBaG9X6yj76N7gw3PFa8B6PAIU2+G7ALLhFn3OF0g9EG3Ux4rk/FOpGfdqKV+m0/JZr8mIslf2urBufg1m5Pu8x/hG4hEHBhFmwyHPhu0L4GVv6GvcxxEe5HcaKEEEMsJ/vDcIsRDaeJL5/gwtmfD+pE+fTHmFzTBxBOBj36ne/+12+NwhKJiogJIvrx7XZlktwYx+iHTFC/egXgp3vFS/2wa7cRvl9uV3fS0ACEpCABCRQfwTqXpiE0VZGTzgNsfcYnxg5JEIT+4/RxZNgjFs8C4gAjuNVoR3EAEKBcBKMMNrBSOMVBhChROR74DXB+CI0CcM5DG3OQXxgkCFM+IzBhpGGcYXxhTFMvgLXxhAjl4OcCkoIF9ZUIbSLJGC8AmGwYRTSRktPpOkrT+5Zqb0amzInjDwM/DA0y8eq7Ssfj/dhWGI0Ipi4fjWjO9pjS9gaRj15CxEeFe2xpV8IE2a9IpcDAxsPCeeSU4Iw5HwWIYyn63E+dSrHHddmP0ICQUOYGOKVECbaoD1CxLhv9Im60VZle+QTcR73lXvHveB8nvYz0QI5Fi2V6EtLx6vtr3YO+3jxXWJM9Ak2CAS8Skz2QDI531M8NORxMK5yWzGuo48+Ot+33XffPd8bPHkhghHJ5I/wPSyfSz/5zO8S/CJPBLZcnwR6QgEJQeNcQu+oy3ejsvB7gXeTWc/4vQvxAdebb745/x5z/2GMd4ffBdjz+0PCPt85iwQkIAEJSEAC9U9g/MeXdTYejGGeqGIgYWQhKHix3sWFF16YDWWMF54oYxxh6CJOqEOYEGssYHjF+YRe8fSYJ/UYmBhYGEPlwhS9hM9g9GGIh3GG8UyhTzxlHjFiRBY6hA1hVLE/wqzwUIShzfkYw4SsRCgLMyThdeEc8hnIaSGZGPFDfxBGPNGOp/Xl/hHyRXvkDZCn0tqLNjBsMQQ7Wug/hiXMyd3gfoTB21Kbf/nLX/KTfXIKqhXuGWKScSD6CE9CGHItPATkVCAiGFv0HVbw4dx4uk4/2EcdRAN1YLbRRhvl+8fsa4gcDF2MaKYMJq+BerRBWwgP2iiPibwhJhfgHp166qn5u0L4HJ4D8j7aU2ib7xHfDb6L9JPvJ/vK12ytTbgwRkQm3y1EyeGHH5754UHh+8qsZsGlsq2bbropXxdR853vfCd7GLk2/SHHCHERYpNrVZa4PsIHEU2YGuFdMCLEkRA5ftdgW63AG8FPiB7fW7jTJiIEwUIeC0IdJvDi/iPkGSPC3yIBCUhAAhKQQGMQqMt1TMLgxNBhHQmMcYzcG264IV1//fU5JwEDlCfyzGLFe54m82SVVbA5BwMfrwLGTxi3GEW0TQ4IRhLx8vEEF0OJF8YyxhqCg9AZDGdECoKF9qnD9TBQMTIxOFkLhWMYnAgfFonjCTfGNkYY9QiXIReGJ86IFowwnlzzpBkDnPMQJBjAjIUn1NGn8lcx9rVnWz6/I+9hgfEIO/oWYUHltjjGCyOUtUVghOEaoVRRl37DBV6wQfAhRqjPMe41+7mviE3qYqzCkKmEMVRpk3tJXcQDXjA8ALBE4LEfzggSJh5AnHAOOScY97SBx43j7B9chDFxT7gWhX4wrTF9I4QKwx4vFqu440Xj+0Sdtgr9RoyyKjrfWyZMgA2CmOvFjF9x3WrtcZ3yi7qICMaJx46QLgoc8NLBsdwe5yK+4IVHg+8qHkS+j4hz6hKuFd/tlvpAPdpiy/2BN78X5L7gXaI99vNdrix8J2DIcSZ2oD7fFUIw8WrxnYc1Aon+I365N9wDPCacZ5GABCQgAQlIoHcSaM86Jv0KA+B/yRkV4xk1cnQaMPA/ceUVh3r0I13mxRNgjEgMFYwbDCMKBh/vMaYi5AkhEvU5F+MRIwcjLtqKdmiT4xjYtBHChbbjqS11KWGEYhxhlPHifF70gf1ch2twTrSNEUihPfbRZwp148k2Y6J/XINzqYtRzYv2aDvGnE/ugR+ILZ52I0y2L6aXJRka709lCcYYwRifPEVHHDCWlgpiAxbkc3AfKMELJsEw7hsMuc/cA9qFD8Iw7gX7uKccpy4eAY5R4hjnwJ12OM5+rsV5HKNwbtxPxh/3mT5y/2i/lsLYECGIY4x42uWFN4C1WMhhQhTEdWtps7IO4+PFmBBZ9Du+s7zneowh9jPeYMIxrl0ee2X7LX2OtmERnOFTGbpHPV4IDQrf97ivfOY7QP/gyrn0Pb4DtM2YauVNexYJSEACEpCABL5dAuiJgYNmqumidfmoMYxxjKYwWBlt7MfQqSwYXGH0UI86UZ8tbfGKfZXnx2faoGAolUtck/Mx5Lgehc/x4tw4P84t7wtxxZg4p9wmfSsbbHF+T23pGy/Czpg1K8bbWn8YH0/u8UzwNB8js7WCIOEasIhS5hX7YEOhLveFbRQMV9qJEu1xTtlILl+DfsGacylxTrQRhjD1GHf53KjT1hYWrIVD/gaejBgX12IdHLx6hB4SrtSZwnep8nsd/WXLC/FeZlb+nerotWk37i8secV1y21GH8jvokQ/oi6eF+5TfKYOzPkdK+9jv0UCEpCABCQggfomUJfCBORh0FTDX81gqaxfWafyc7V247rVjlWeX/m5pXPL9cKQi/bLx8rv43hPbjEgCS8jfG5EkU9Dfklrhf4zPkLeMJQxfsPAb+k8zqkcd+Vnzo19lduW2o39UT8+l7flY+X31Cl/Lr8vn9/We4TJK0W4H6KO0EFms4rQNAxxvBVPP/30eNdqq81qx+lfa32M71xrdaq1W8u+aDO2rZ0TdWJbrlu5r/Jzua7vJSABCUhAAhKoXwK1xZzU7/jseTcQQJRgOJM3MKQIQyIXoC1jkXMQIngveOLN+7bO6Yau95omGT85L0yUQH4Kkwewj7A08pbw/JBbwz6LBCQgAQlIQAIS6AsE6tZj0hduTm8dIyKDXBGS/1l/haR9hEprBRESQiS2rdVv9GMIDiZAOPvss7M4YUFJvCgk3ZOzw0xksIW1vBr92+D4JCABCUhAAhKAgMLE70G7CfBU/5JLLkmbbbZZnj0KYYIBbWkfAcKomA2LLcKOGbpYUwRPya677tqcrN6+Vq0tAQlIQAISkIAE6pOAwqQ+71uP9Jon+szYxBoiJEwzZTH5IogSjGue7PPep/y13x6SuJk57LXXXksnnXRSXlQTbwlJ33CEeeSB1N6qNSUgAQlIQAISkED9EVCY1N8967EeYyRjRJ9wwglpyy23zLNK0RmECk/8WUuGNScQKNWmDO6xjvfSCyM84MZ6IXigmEaZBHhycBCATFkc01330iHYLQlIQAISkIAEJNBlBBQmXYaybzSEMb3UUkul+++/P68xwtN8QrlY7JKFJ2+99da8PonCpO3vAwIOUXLppZemddddN08bjPgj/4R1PS666KK0++67t92QNSQgAQlIQAISkEADEFCYNMBN/LaGQNgWguN73/teFiVx3UceeSRdeOGFaYkllkjf//739ZYEmFa2CDw8ImeddVbmtsgii+SwLUQJx5iZi+mEeW+RgAQkIAEJSEACfYGAwqQv3OUuHCOGM4sBIlJYkZu1TN5+++0c4sWCgXgAygtMduGlG6opQrVOP/30dOqpp+Z8EnJKKDEDF7OekQRvjklD3XYHIwEJSEACEpBAKwQUJq3A8VDLBDCYmZ3r3nvvTW+++WbadtttsyC5/fbb0wYbbGBuRMvo8hE8Ic8880x+P2rUqMSrXFgpfeaZZ3YdkzIU30tAAhKQgAQk0NAE+hUGUouxIqNGjk4DBs7Y/BS3oUk4uHYRQJTELFx4UShff/11fsIfCyi2q8E+VhlWzMTFhAHwC09JYIAhXpRZZpllgmNRx60EJCABCUhAAhLo7QTQEwMHzVRTN/WY1ITJSpUEIheCbQgTtjFtcGV9P49PgFA4Vn6fa665qgoTauOVskhAAhKQgAQkIIG+QkBh0lfudBePs9raGpNMMkkXX6Wxm2uLVzXGjU3E0UlAAhKQgAQk0JcJ/CcGpy8TcOwSkIAEJCABCUhAAhKQQI8TUJj0+C2wAxKQgAQkIAEJSEACEpCAwsTvgAQkIAEJSEACEpCABCTQ4wQaTpgwyVgrE41NALw9dSc4+Vve0d6xfcvd83ISkIAEJCABCUhAAhLoMIG6T34PY53pVpmC9Y033kjjxo3L06xOMcUUeZaoluiwdsS7776bBg4cmKdmJRm5PMtUtfO4RlyL5GSuzwxLXJPCsZj6NURPZ5KYmZmJa7Jw4euvv57bXnLJJVNbidPV+u4+CUhAAhKQgAQkIAEJ9FYCDSNMPvzww3T22Wfnxf422WSTPBVrTGPbEnxWMH/yySfTnXfemTbddNO0zDLLpKmnnrql6nk/9f/xj3+kTz/9NM0000xZICA8EA6s7bHjjjumxRdfPD3xxBPpggsuSBtvvHFaeeWVW22ztYOIG8bBSuEnnXRSYnX1Sy65RGHSGjSPSUACEpCABCQgAQnUHYG6FyYQ/+CDD9Kll16aWHX8d7/7XZptttkSC9SVvSnhvQhvBudNM800ad11102ssn3iiSfmc/BG8JlSrpt3FD8GDRqUxQzX/Mtf/pJmmGGGLByuuOKKdO6552aPzaKLLprGjh2b7r777rTccsvl9SgQF3g/aJO+lNtmf0teleg33h/6xXXbWt8izok+8zlEWuWxqBPbcr+iLvu4ZrRB3fKx+My+OD/ex+do360EJCABCUhAAhKQgASqEah7YUKYE4LktNNOS3/84x/THHPMkQUGgw2DGiP5s88+y5/xkhB6Fcenm266tPbaa6eRI0emI444Ih199NFp/vnnz8eriQWECALh888/z14ZRBBG+zbbbJNX8Wa1bjwns846a26PLccJ9friiy+aDXzaoE/0n7AshEelEc95eGbCY1J5PHey4gdjpc3ylnbCE8R7jtEf+kmBCWOl/bgGbXCc+lwfZnGc8/HgUIf9wZPxUGiLNinRXv7gDwlIQAISkIAEJCABCbRAoO6FyZgxY9J1112Xll122bT00ktX9TwQZnXDDTdkIx8PCatth5ENF4zojHaslwAAKTlJREFUzTbbLIdoXX311WnYsGFV2wmGGOZlgxvDfcCAAenAAw/MBv9LL72U+4SBvuGGG2Yh8Morr6Trr78+G/prrLFGFj933HFHDgEbMWJEmn322aP55i3C4Kabbsq5JXPPPXcWA1y7rUKd++67Lz377LPZozP99NMnrkGh34iKRx55JD366KP5OGKKcLMQL9QbPXp0uu2227LI4z3H55lnnixCECuvvfZaevDBB7Ogom2EFSFx3A9C3FZcccVmwUJ7FglIQAISkIAEJCABCbRGoO5n5Xr++edzaNXmm2+eDWFEAoY5oVSvvvpqzvnYaaed0jnnnJO9Kuutt14OseLpfhj5nINxTo7J/fffn0iKb6mUBQnnIx4QHcccc0w2yhE58847b06+J7SLPiBQ5pxzziw+zjrrrNzfX/3qV+lvf/tbOvbYY9NPfvKT3Eb0B+P+1ltvTeuss04eB96Yu+66K4udqFPZP/YjGBBhF198cTr99NNzmNp8882X827gxPH3338/X/Pkk09OW2yxRVp//fXTww8/nAhFwwtEHZLsDznkkLTwwgun1VZbLa211lpZID322GPZ6wNb2ltzzTWzEENgPffcc/k68DjhhBMSOT8WCUhAAhKQgAQkIAEJ1Eqg7oXJzTffnEUFIVwhGsJ4v+qqq3IeyR/+8IecQ3LQQQdlkXDjjTdmr0EZEueussoqObkcD0G0Ua5Tfk+IFaLjhRdeSFdeeWV65plncpuIHMTJLLPMko12QqZom33M/oXxjxcEsXTcccel3XbbLb399tsJ4z6uiTA46qij0gYbbJA22mijPL4ddtghe3KiTrkv8R7BgGeIkLadd945X+u3v/1tFgqch+hALOHZ2GOPPRKelKmmmiqNKDwel19+eRYT1HnooYcyN44RZsb4EBv0k/5TF9FCjs6MM86YbrnllpzjQ38RgIR4IcYsEpCABCQgAQlIQAISqJVA3YdyETZFGNHkk0/ePGaEAK8tt9wyiwMMbAxu8j3I7cCrgKFOnXJBTGB4v/zyy2mhhRYqH5rgPeKF2bkIfyKkCY8I16AgTiInI/Iv2BfHCHMiXIw+LL/88tmTgzciCmKLnBdCvug7bZDbQu7LvffeG9XG29IWwoGZwPC0IBzwjpADQxgY4VVvvvlm+utf/5rwLuHVCfHANkQW4gkxwnUQe4S+Lbjggtlzwjkff/xxPo926RefSfLfZ599Evk6v/zlLzNz7olFAhKQgAQkIAEJSEACtRKoe2FC2BWGdAiAGDifCc/65JNP8kxW5EQQRkWIEUY8r3JBOCBaeNqPMAkhUa5Tfo8QIdwJA51cDEKhuGZZ7HCN8JhwLscQARj/vOeFAY/ngbyPKHhhOJf+Uz/qsq3sd5zDlvwYxAdeEvpC3/AWcQ6J9+S4ILwQOAge2qMw0xehbWwpSy21VBZmhKfRJqLjyCOPzF4f6hH+BR/ahRXMFlhggXwcrxMCjWPRfm7UHxKQgAQkIAEJSEACEmiFQN2HcmEA8yoXPmMcs+bIj370o2xU4+Egl6Mc8lV5TogRDO3wfpTrlN+H0c21mB44ph0u16n1PW1Fe5xDmBh9qBxXa+1Rl/wYvBZ4R0I4cA5t0x65MIgdPEPl6z311FO5Pgn47KcNpl3ef//9s9eFXBTCtWgDDxECjnqIrhdffDF7q8ptst8iAQlIQAISkIAEJCCB9hCoe2FCiBMiotIYZkV3ZskaMmRI2m+//dLqq6+evQQY19UKhj3eBDwUhD6FSKlWN4x66vIiz4IphzHYo4SwqRQXnBvHoi77ok32DR48OF+fJHjGRX1e9KlcL86PLWFViJLoB+fiKcETwtjIKeE4a7HQHn3jODkveIBmnnnmnMSO14Ocl+9+97t50UpmFmOdGAQTHie8JPSN8C88M5wX3iZC0BBIcOb6bON99NOtBCQgAQlIQAISkIAEKgnUvTDBiMe4jjU0GCAG/EcffZTzNDCOWWwR4xiDmtCuMPQrYSBmEBq0SZ1qJQx6jPqoQygZL86NQh+qXYd9zFwVJYRHWcAsssgiObSLRHbGRZ/xdrCaPPXLdaMd9iEo6APth9hBKJDsjqdjiSWWyEKCNqgHE6YVpg7igzpPP/10c7/Du8KsXIgPxkQuzNZbb53Ig3nnnXfy1MuRB0MfmK2L8+j3hRdemA477LAcXlatz9F3txKQgAQkIAEJSEACEqh7YTJixIj8FB8jGeOXFwY3XgFCrHh6TyL3Aw88kL0AeFAQMiEI4ivAeRjwJMiXw5LieGzxFOAlwEjHE1FpcPOZtkmwpx65LXzmRX0EwRtvvNG8eCFeDvYzoxb94nzWZGEq3vPPPz/PiIUgYSYxVqVH2HAO7ZWvjRBhLRZEAgIMzwaCg/OGDx+ehRO5I7QBK0LbEGLMXIa3Z5NNNskhWdRlemKS/xFEvKgbx2MfYo+1UBBDeK24HuPCi4LHib7B/LLLLssiEV4WCUhAAhKQgAQkIAEJtESg/6+L0tLBsZ9+lqacasIVyVuq3xP78VQgPjDCWXODglFMUjmLAiI0CGPiKT5J2xjNhC2xHyMeg5n6eFhY9X255ZbLhjqiolrY1FtvvZXzVDDwCV8iwTw8JbTDi+shNhZffPEskGLxRGbJwhuCaOI8ro04IBkdIUCfuC6eCxaLZA0SvB/Uw2vBwpCcT0gW1w6BFGNmjEOHDs1rniBmOI+1WfB2ICSoz3WYjpikdq7NOAjZIhyNccCEGc7Iz7nmmmuyAELMUY826Btb+DL7F4n8tI93h3O5BxwLccj1SYxnH/2xSEACEpCABCQgAQn0HQLoiamm+l+6Q2sj71cY0uNnjpdqjxo5Og0YOGNVA71UrUffYgCfccYZiQUDmXUL0YFYiWFxHIGBhwHDnILXASOZzxxjRqxLLrkknXLKKenQQw/NU/iyv5ohTXu8KNRhfRK2FK4ZxyKMizbiFV4O6iEC2FIvzqU/5WPUp0T7bKPv7KfdEEXs51xecR3q0GZcn88co4/Uoz228Ir3bAnDYkvbbDmHcVI3rhP9pk68Z0s9rkfhc4yBfkRf80F/SEACEpCABCQgAQk0PAH0xMBBM9U0zroXJhi+hCaxPgdejwMOOCCHFvFUH8MYo5uCUU3B0I7CPkKT8IL89Kc/TXvttVcaUYSG4RVorXAe7cS2XDeuU94X7+PardWprBuf2ZavF21Em+V6UZdttePlcyvbjHGVz4367KOU6/xnz4Q/y9eN88v7JjzDPRKQgAQkIAEJSEACjUagzwkTPB7kOLDqOCFdLCC42GKL5ZCjeHpf7SYTbsWMVOSWEHK03nrr5alyfbJfjZb7JCABCUhAAhKQgAQk0D4C7REmdb/AIk/h8YqQ67DrrrsmVoLHg4K3JJ7Ut4SPkCVyNfbcc88cAtaaiGmpDfdLQAISkIAEJCABCUhAAp0nUPehXJ1HYAsSkIAEJCABCUhAAhKQQHcQaI/HxGmSuuMO2KYEJCABCUhAAhKQgAQk0C4CCpN24bKyBCQgAQlIQAISkIAEJNAdBBQm3UHVNiUgAQlIQAISkIAEJCCBdhFQmLQLl5UlIAEJSEACEpCABCQgge4goDDpDqq2KQEJSEACEpCABCQgAQm0i4DCpF24rCwBCUhAAhKQgAQkIAEJdAcBhUl3ULVNCUhAAhKQgAQkIAEJSKBdBBQm7cJlZQlIQAISkIAEJCABCUigOwgoTLqDqm1KQAISkIAEJCABCUhAAu0ioDBpFy4rS0ACEpCABCQgAQlIQALdQUBh0h1UbVMCEpCABCQgAQlIQAISaBcBhUm7cFlZAhKQgAQkIAEJSEACEugOAgqT7qBaR22OGzcuNTU11VGP7aoEJCABCUhAAhKQQCMSmLiRBoWB/eWXX6Z+/frl1zfffJO++uqrNOmkk6aJJ544TTTRhDrs66+/znUmmWSSfLxanTIjrkG7rZVyG/SFc3iV97d2frVjnE9fGR9jifHQfkcKY6CtV155Jc0555xpiimmaOZWS3v0B7a0Ey/6Eqw72q9arm0dCUhAAhKQgAQkIIHGI1D3wiREAoYyhvYdd9yRt/PPP3+6884700MPPZS22GKLtOyyy6bJJ598vDuIt+Dtt99OV199dVpjjTWygY5A6d+//3j1yh8wxt9///302WefZaERgiMECOJj2mmnTVNOOWXzcc7nWtTpqMH++eefp8cffzxdccUVafDgwWnzzTdP008/fblr7Xr/xRdfpOuuuy7tsMMO6eSTT04bbbRRamvscYFgDd833ngjv956660sbrbbbru04IIL5raivlsJSEACEpCABCQgAQm0RaDuhQmGPp6EUaNGpcMOOyxNNdVUae+9907TTTddWmqppdIvfvGLtPDCC+f31WAMHDgwLb/88rneLrvsklZaaaU0wwwzVKvavO/JJ59MBx98cHrvvffSkCFDsthAeHzyySd53x//+Mc0YsSI9Oabb6Y99tgjrb766mnPPffMgqejwgTRMGjQoPTwww+nV199NW244YbZU9GaiGrucJU3eDZWWWWVtOuuu6YVVlghe2AQHLUUBOBFF12Ux42goSB0YLLzzjun448/Pi299NIdFmG19ME6EpCABCQgAQlIQAKNRaDuhQkeEwQAYmDGGWdMu+++e5ppppmyoY1IGTNmTA6jinCj8HBwG/FuYPDPN9986ZBDDsmvDz/8MG266abZ41HN6Kf+vPPOm6/x9NNPZ68DYVW0++CDD+Y28G7wOUQI1+HFvnhx/agT9WLLsSj0m/2cj5jgnAihYl9l4Tgl2o7P0XZ8Zot4+9nPfpY9PIyVfXG9qE9bCD+uxT5eiLCnnnoqbb/99rlPeIcQKwicG264IV1//fVp0UUXTZNNNllze+U+xXu2FNqsNpb/HPWnBCQgAQlIQAISkEBfIFD3woQn9RjDeDFOOumkLBjCgMfgDUMc4xqRglE/9dRTZ+GCMc6L/Iolllgi4TE55ZRT0uKLL57Dkap9AWiTkDDOQZDMPvvszWFLCKGNN944DRgwIF+Xz8ccc0yui+EdXhX6jNFOG4gY9iN4qE/7Ueg7/SVsjP7jkYnxRJ1qW+ry4jwEA9eiz1yD9rn+2LFj83URJ/BiP/1AmCFO2M95tPPxxx/nfuJJos/Uu+mmmzLzww8/PHukGB/jpu1nn30216Ed6rKPV3DjPfcC9oyZ61skIAEJSEACEpCABPo2gboXJhjSGMnrrLNO9mSUDfu4tRjXo0ePzvXuv//+tOWWW+an+zzpxzimcB55KJdeemk6/fTT0xFHHJFFQGV7GNuV4iAEBEb7r3/969zep59+ms4///xspBPuNNdcc2WRcMYZZ6RHHnkk57Ssueaa6bbbbkv33HNPWnHFFdMGG2yQDX+uyXUQFS+88EK65JJLcqja4CK3BJFADktrhfES8nXrrbfm6yJ+FlhggTw++vrMM8+ke++9Nz3//PPpwAMPbBZW5M5cdtll+Vpbb711mmOOObJQufLKK9NLL72U81oQbfSN8f373//OXqKFFloo7yOcDoFCP4PrRx99lC6//PI8FjxThMo999xz6eabb85tbF94XWadddbWhuMxCUhAAhKQgAQkIIE+QGDCWKA6GzQGOInXa6+9djaGMYzLYoLP1DnnnHOyIYxRv80222TxgXEdBUOaUDCMagx6DOpKAULdaJ9r8KQfjwCGOmFcu+22W/ZqUAevzMorr5z3Iy6oh3Bh3wMPPJCvgQCi73g29t9//3TBBRfk80NI/f3vf0/77LNPFl2HHnpobvO1117LbUW/K7dc54MPPshJ8jvttFMWE4sttlg68sgj0yvFDFyEn+GFWX/99bNAQKTgweCcEHh4S+67774sRhBOCDlEChML0Fc8H+ST8GLSAK6JYCLvBOHyne98J98LuCCAuBbC8bzzzksjR47M1yFBHmFzzTXXZH6V4/CzBCQgAQlIQAISkEDfIlD3HhOMW8QGSewtFY7/8Ic/zIY9IUzkpCBUSP7GkKYgQgjNmnvuubOhTYI5oUuIjJYKoVUXXnhhPpfZsmibEoKGMCUKBnoUvDQcZzar/fbbL4eevf7661kI3H777TkUDMOfcCjCyvbdd98cVsZ5iACM+/BGRJvlLaKD2bYQGggcrk3OB+IIUfDiiy/ma3B9rsu1GCPeEjwXJNgjljh/lllmSXh1EGB33XVXDnejLpzw7lDoC5MAHHTQQTks6ze/+U320tCPxx57LIeEIXToC6/jjjsu/eAHP0hPPPFE/szEBPQRJmVBWR6T7yUgAQlIQAISkIAEGp9A3QsTRAbGNfkT1QoG77Bhw7LIwItBXWbhwmjm3BAmYRQjJvAAEJZUFhTV2uaaeFYoGOKUECUY8LQZnzkWIof9GOSIKfpEbgYJ9e+8806ujwFPzgxTGRNeFiFn00wzTX4ffaXNysI1GBMekqOPPjp7L9Zdd93MgJCroUOH5n4gfPAYzTzzzLkJcj44j/PxMOGBijwT+sI+PCGIEuogVtjCCbFEqBqeFdZE4RjhY/BFwMAJpoRw0QfEH7k5MKA/kftSORY/S0ACEpCABCQgAQn0HQJ1L0x4sk+SdkteBIQBBjTHY4sngPyN8HBwu8PYx/BGZMRsXi19FaiPQb3jjjvmdhdZZJF07rnn5utEW9XO5Rj9QACV+4RAIV+GQt/wbGDMI0Y4J17V2izvo09MYczMYldddVXO5WDmLT5zDa6N4OHY8OHDs7eJfQgGWBGShTeD6X5pB5FErgzeo8FFmBt1Q7DBnjGznsr2Ra4I7dMG51AvvC2Mk7HhlWEKZ4QL7SHIGGNrvMpj870EJCABCUhAAhKQQOMSqHthgpDAGOZVa6EuhnM1MRPHON5aoR4GOvV4MasX3gc8Mq2Vcj95X/4c50VoU1yD/S3VjXNii9giFOuAAw5II0aMSCeccEL2niAe1ltvvSwCSHpnsUbyWsIDwvkIMhLxGQ9T/yL48AiRe7LWWms1h2iFMMFTQkI7IWbUpY/UZyph8lpiH+KD0DiuRX22tIHHhmtRL0qtAizqu5WABCQgAQlIQAISaAwCrVvfdTBGwqEwfHlKX61g+GIEUye25FoQpsQT+8qCcY5gIRG+2pP8agIBQ5s8FlabjxAn2qVuGNq8L+/LHyp+UIc+kiQ/zzzz5H6QB8LY2B/ro0Rb5dPjXHJd8I7cWiTwE7LGqu6sfI+4oFAPjwgeG7wXFEQDfEiCJ2eHNUgQEHhf8N4QkrXZZptlAYEnhxnOmF0MsbPaaqvl/YyTtukvwoQkeRLnuS7hXnigaDNWq0eU0A/a57p4cfCq0A+LBCQgAQlIQAISkEDfI1D3HhPEwCvFbFMYwlHKhjsGMwYwhjDeDBLWMdrxcHBuuXAe4UYUksCreVQ4FgKHtjGsMeARQJUl6tG36BNbjG88GxynIIYQHXymTdojtApxRBgVSensIy/m3XffzeNoyYCnDUK0yKtB4CCa+Iw4iD7QBvsQdXhOEGm0jzB49NFH04jC0xKijX6RB0JOCH1mFi/ySFgzhtm2YB9jR2Awy9Ymm2ySObOGC/kkeJK4Nn2CKX1E3CBWEHIvv/xy+vnPf56T8plJjD5bJCABCUhAAhKQgAT6FoG6twB5Ys86GSRzk0COAYxxTyFEiKf/GMCsz0FeAwYxhj6zXWGQR8FYxvBmvQ4MaabHjXaiDlsEAcY4QgfhwHS4q666ajbsK+thcCMO6BuCB+Of6X7ZxzFms+I9QoHwKwpt41UgMZz8FRaPPPHEE9Pg/64NgpjiPNohV4Y2o9BfckO4FmIHTwftIkoIxQqhheeCWbnoA3W5Fsc4B6HFWiOIOAQHzBAmXJOZvRAXzPIFK7wzXDMED/1AnDAm+oUXCc/PQw89lL0zcGd81GfL1MkIE65JvgptWiQgAQlIQAISkIAE+iaBfoWR2GJyxqiRo9OAgdVDmnoLLozuQw45JBvEf/7zn7MYiSf4eCowzjG6MZgRHxjCeANI1ObJfIgPwqUIadprr71yzsTuu+/ebMiXx0o7GOmxzgnJ6QiZcp4E9fE0UC8S2vEyYKxjgCMG6AszWWHEk3AeM3LhxUDw0DfaYD+Cgf4yOxfXRRQxBkRDZU4LY+YarJXCLFgIFcQEHqAYK8cRCwgzkvbpA4wQBggGvCOMC470gTVNqM+sXFyTejGGMpt4T/8RJQgfxAxCh88wRtTQxpJLLpnDybgG40GcEV7GuCpZRrtuJSABCUhAAhKQgATqiwB6YuCgmWrqdN0LEwz8q6++Oh1++OHp2GOPzSFKZcO2UndhnOP1CPHCljYwmmkDTwKrvrcUykW9MPBpBwERbZWJc13apUR93rOfF/t4xXu2UXhfbpN6tBXtcJzPiIlyvWi/2nXLbfM+rs172oi2I0Ss2j7qRqm8buxnG2OJfsSxuGblluO0x3kca63taMutBCQgAQlIQAISkEDvJ9AeYVL3oVwYsyuuuGLaZZdd0lFHHZUX+iNUCS8Ax6rlK8Q+DGeEBk/smWGKXBRCvPBahKFeebvjXPYjDFoqnN/a8ZbOa2l/ZVuVn+O8zl63WrvV9sX1qm2DnQKjGh33SUACEpCABCQgAQlUI1D3HhOe8Ie4uP/++9O1116bp7rdcMMNszhpzThGuBBCRA4HIV4bb7xxXruDsClKGNjVwLlPAhKQgAQkIAEJSEACEmidQHs8JnUvTBAXvCiIFKadJc+C2aAQG20JE3JAOIfEbHI4OIeiKMkY/CEBCUhAAhKQgAQkIIEOE2iPMKn7UC4ERIgIRAgJ5bUWziMRm5dFAhKQgAQkIAEJSEACEug5AhMuvtFzffHKEpCABCQgAQlIQAISkEAfJaAw6aM33mFLQAISkIAEJCABCUigNxFQmPSmu2FfJCABCUhAAhKQgAQk0EcJKEz66I132BKQgAQkIAEJSEACEuhNBBQmvelu2BcJSEACEpCABCQgAQn0UQIKkz564x22BCQgAQlIQAISkIAEehMBhUlvuhv2RQISkIAEJCABCUhAAn2UgMKkj954hy0BCUhAAhKQgAQkIIHeREBh0pvuhn2RgAQkIAEJSEACEpBAHyWgMOmjN95hS0ACEpCABCQgAQlIoDcRUJj0prthXyQgAQlIQAISkIAEJNBHCShM+uiNd9gSkIAEJCABCUhAAhLoTQQUJr3pbtgXCUhAAhKQgAQkIAEJ9FECCpM+euMdtgQkIAEJSEACEpCABHoTAYVJb7ob9kUCEpCABCQgAQlIQAJ9lIDCpI/eeIctAQlIQAISkIAEJCCB3kRAYdKb7oZ9kYAEJCABCUhAAhKQQB8loDDpozfeYUtAAhKQgAQkIAEJSKA3EVCY9Ka7YV8kIAEJSEACEpCABCTQRwkoTProjXfYEpCABCQgAQlIQAIS6E0EFCa96W7YFwlIQAISkIAEJCABCfRRAgqTPnrjHbYEJCABCUhAAhKQgAR6E4FeI0zGjh1blcvTzzybXnrp5eZjH330URozZkzz57beVJ7fVv3eePzLL79MDz74cPrggw97Y/fskwQkIAEJSEACEpCABDpNYOJOt9CJBp544sn01FPPpFdfez199tlnafLJJ09zzTlHWnvtNdJMM82UW77zzrvT9NNPl+aZZ0j+fMqp/0zTTjtt+smOP6rpypXn13RSUemLL75Ik002Wa3Vu7UebK66+tq0xXc3SzPMMH23XsvGJSABCUhAAhKQgAQk0BMEesxjct99D6RLL7sii4zvbr5p2mXnHdNGG66f+vXrl079xxnp66+/rspjtVVXScstu0zVY1218/g/n5AefOjhrmrOdiQgAQlIQAISkIAEJCCBNgj0iMfkueeeT9ded0PaZOMN0xJLLNbcxUGDBqaFFlogffjhh2niiat3bemlhzfX7643H374UXc1bbsSkIAEJCABCUhAAhKQQBUC1a3/KhW7ctezhTBBhJRFSbn96advOVzpX5dfmaaaaqq01pqrN59CHsmjjzyWXn/jzSIcbLI0ZMjgtPqIVXO95kr/ffPxx2PS5UUbM840Y1p/vXWyhybq3H33venxIryMcuONt6QnnngqzTH77GmDDdbN+x5//In02GNPpDffersINZsxDRs6b1pllZXGayNXLP0YN25cuvW2O9KLL76UuPZcc82RRqy2ah4/1e659770+utvFP1dLd1y623ptSKsbbZZZ02LL75oIdIWLLU0/ltCzW66+dbc7kQTTVT0ZWiaZ94h6eZi3zZbfz+PPdpeeaUVcx9effW1IgRu+xwmh8fqiSefSu+//36ae+650iorr5Suv/7GtOCCC6RlllkqX6ytvo/fIz9JQAISkIAEJCABCUig4wR6JJTrzTffSrMWxndHynvvjS6SwD9oPpU8lYsvvixhnH9n043SeoXY+GzsZ+MlzEdlksf/efqZadw332RhQ9hYuQwbNjStscaIvGvI4Lnz+yWW/I9H56GHHkmXX3F1mnqaadIWW2yWBhfH77n3/nTFldfk+tV+NDU1pYsvuSw9/fSzaZmll8qCgTyas84+L4sUzvn6q6+Lvr6Sri5ySGadZZb03c2/kyafYop0UTGmMWM+qdZs+qbo/wUXXlK0+0xabLFF03rrrp0+HvNxuu66G9M777ybxo37Jp8Xbd940y1pniGD0+ZFyNzUU0+d/l3k7Vx/w01ZoGxeXG/QoEHpmmuuT28U9yUmFqil71U7504JSEACEpCABCQgAQl0gECPeExGj34/IQK6olx/w805YX7LLb/b3ByejMqCoDnzrHPSLIXx/71CWFQLFRswYKbEizLv0HnS0HnnaW4Gb8b88w9Lm26yYd6HoT/VlFNmA3/llVZIM844Q3PdeIMn5Jlnnktb/b/vNY+X8LWj/3hcevbZ57JnYqL+E+VEewRGeJBmmWXmwlvzZCLkbamllozmmrd4Pl5++ZUsYhZe+D9elXmLvp76j9Ob6/Am2l5hheWax4LgYEKABRecf7yxzFB4qS771xXN59fS9+bKvpGABCQgAQlIQAISkEAnCfSIMBk4cEDzk/nO9J9clE8++aQIQ1qx1WbeeWdkOvGkv6ehhWD5fiFg8K60p7z//gfp00/HpvmGDRvvtGHD5s3C5I0ihKyqMCn2U2648eYcShUnjy08Om+9/U58zFtya6LgVWEmsnfefTd2jbcllIwxDC3EU7nMN9+whDeqsgwuQrWijBr1XhZCCy7wv+txbL75ho4XkkZYHKWWvueK/pCABCQgAQlIQAISkEAnCPSIMJl99tnSK6+8mnh6XxlO1Z6xfP31uFy9mvej3E7/wisxySSTpLGFuGBNEAz/9pSmpv+ERtFOuUw0Uf/8MY6Xj/H+myK/hLLtNlsVUw9Pmt/Hj0pxNOmk4x9PqQgza4ra42/J/eD8yjb6tyC4ynzIwaF8OvbT8RplSmLuR5T29D3OcSsBCUhAAhKQgAQkIIGOEhjf0u5oK+08b4EF5i+Srj9ocUre0aNH19QiYVdTFPkYJL+3VvDQ7LzTjwtjfGw648xzUkuLOUYbiISvvvwqPuZcDK7z/AsvNu/jzQv//TzHHLOPtz8+zFmsyUJ5480385oorIsSL4RSR8tss82ap1MmN6VcKvtXPhbvWQOG15NFYn9ZiJDoXy7d1ffyNXwvAQlIQAISkIAEJCCBINAjHpN5i8USmenqqquuTSPfHZXmX2C+NE2RlE0eyKOPPZ5nptrrF3tkL0d0tKXtSisun26+5bZ05VXXpOHDl8jVSFQfOu+8aYGi3SgsTPij7bcrEs/PLRLgz0rbbbtVmqZIZK9WCIl6qkgsH1aEN01ZCBJmCSOPhNm1SB5fbNFF0ksvv5yYxYtcjVgMsrItjHtmvLqxCOX6qJiCGEE2pgg9e+CBB9OiRRvVcmEq26j2mdCsmWcelMPICGXDA8W6K7VOc7xpMUnAOeecn/50/AmJHBXySfDCIL6idFffo323EpCABCQgAQlIQAISKBPoEWFCB5YavmSabNLJCgHwdLrkkn+Nt/L7jj/+YU2ihHZWLIRJv4n6pUeK6YIRJHgiSExnOuLKMs00U6ftf7htnhXrtH+eWYiTrauupL5ikSxObsWpp55e5JUMTd///haJBHKiq7jOXXfdk0UNAoYZsVoq/fv3T1tvtWW6upjx6t777s9t4jEhn2PmYiasjhbGSLvMCMbsWpFvwhTJ5QT2ltpnxjFEGuKLnBN4wfHPfzmx+ZTu6nvzBXwjAQlIQAISkIAEJCCBEoF+RTjP/xILSgd4O2rk6DRg4IydygOpaLLFj+Q4lJ/Yt1ixlQOs7UEYVmfyVsrN0x4ioDKXgzyVCXNCymdWf//555+3O7+lekv/24ung/FW9vF/NWp7R3L/Mccen9ZZZ8203LLLTHBSd/R9gou4QwISkIAEJCABCUigoQigJwYO+s+st20NrEdyTKp1qrOihDbxRnSVKIn2qhn8HREltNfepHvOaavg2ajWx9bOY1Yw1nQpl8eKEDo0Kvkr1Up39L3addwnAQlIQAISkIAEJNA3CfRYKFffxN07Rv3W22+n8867MK8wP10xLfHbxWcmIyBHZ845/pOw3zt6ai8kIAEJSEACEpCABPoKgV4TytVXgPeWceIxefHFl9JHH3+cPTnMLDb3XHP2lu7ZDwlIQAISkIAEJCCBBiDQnlAuPSYNcMM7MgRmKVt66eEdOdVzJCABCUhAAhKQgAQk0OUEek2OSZePzAYlIAEJSEACEpCABCQggbohoDCpm1tlRyUgAQlIQAISkIAEJNC4BBQmjXtvHZkEJCABCUhAAhKQgATqhoDCpG5ulR2VgAQkIAEJSEACEpBA4xJQmDTuvXVkEpCABCQgAQlIQAISqBsCCpO6uVV2VAISkIAEJCABCUhAAo1LQGHSuPfWkUlAAhKQgAQkIAEJSKBuCChM6uZW2VEJSEACEpCABCQgAQk0LgGFSePeW0cmAQlIQAISkIAEJCCBuiGgMKmbW2VHJSABCUhAAhKQgAQk0LgEFCaNe28dmQQkIAEJSEACEpCABOqGgMKkbm6VHZWABCQgAQlIQAISkEDjElCYNO69dWQSkIAEJCABCUhAAhKoGwIKk7q5VXZUAhKQgAQkIAEJSEACjUtAYdK499aRSUACEpCABCQgAQlIoG4IKEzq5lbZUQlIQAISkIAEJCABCTQuAYVJ495bRyYBCUhAAhKQgAQkIIG6IaAwqZtbZUclIAEJSEACEpCABCTQuAQUJo17bx2ZBCQgAQlIQAISkIAE6oaAwqRubpUdlYAEJCABCUhAAhKQQOMSUJg07r11ZBKQgAQkIAEJSEACEqgbAgqTurlVdlQCEpCABCQgAQlIQAKNS0Bh0rj31pFJQAISkIAEJCABCUigbggoTOrmVtlRCUhAAhKQgAQkIAEJNC4BhUnj3ltHJgEJSEACEpCABCQggbohoDCpm1tlRyUgAQlIQAISkIAEJNC4BBQmjXtvHZkEJCABCUhAAhKQgATqhoDCpG5ulR2VgAQkIAEJSEACEpBA4xJQmDTuvXVkEpCABCQgAQlIQAISqBsCCpO6uVV2VAISkIAEJCABCUhAAo1LQGHSuPfWkUlAAhKQgAQkIAEJSKBuCChM6uZW2VEJSEACEpCABCQgAQk0LgGFSePeW0cmAQlIQAISkIAEJCCBuiGgMKmbW2VHJSABCUhAAhKQgAQk0LgEFCaNe28dmQQkIAEJSEACEpCABOqGgMKkbm6VHZWABCQgAQlIQAISkEDjElCYNO69dWQSkIAEJCABCUhAAhKoGwIKk7q5VXZUAhKQgAQkIAEJSEACjUtg4raG9tGHY9JXX33VVjWPS0ACEpCABCQgAQlIQAIS6DCBNoXJdNNPk/r169fhC3iiBCQgAQlIQAISkIAEJNA3CYwaObrmgRvKVTMqK0pAAhKQgAQkIAEJSEAC3UVAYdJdZG1XAhKQgAQkIAEJSEACEqiZgMKkZlRWlIAEJCABCUhAAhKQgAS6i4DCpLvI2q4EJCABCUhAAhKQgAQkUDMBhUnNqKwoAQlIQAISkIAEJCABCXQXAYVJd5G1XQlIQAISkIAEJCABCUigZgL/H2hxUWHq0QO+AAAAAElFTkSuQmCC" alt="metin, yazı tipi, ekran görüntüsü içeren bir resim
Açıklama otomatik olarak oluşturuldu" width="453" height="165">



